
Provably Optimal and Human-Competitive
Results in SBSE for Spectrum Based Fault

Localisation

Xiaoyuan Xie1, Fei-Ching Kuo1, Tsong Yueh Chen1, Shin Yoo2, Mark Harman2

1 Swinburn University, John St, Hawthorn VIC3122, Australia
{xxie, dkuo, tychen}@swin.edu.au

2 University College London, Gower Street, London WC1E 6BT, UK
{shin.yoo, mark.harman}@ucl.ac.uk

Abstract. Fault localisation uses so-called risk evaluation formulæ to
guide the localisation process. For more than a decade, the design and
improvement of these formulæ has been conducted entirely manually
through iterative publication in the fault localisation literature. How-
ever, recently we demonstrated that SBSE could be used to automat-
ically design such formulæ by recasting this as a problem for Genetic
Programming(GP). In this paper we prove that our GP has produced
four previously unknown globally optimal formulæ. Though other human
competitive results have previously been reported in the SBSE literature,
this is the first SBSE result, in any application domain, for which hu-
man competitiveness has been formally proved. We also show that some
of these formulæ exhibit counter-intuitive characteristics, making them
less likely to have been found solely by further human effort.

1 Introduction

Early work demonstrated the wide applicability of SBSE to many different soft-
ware engineering domains, perhaps surprising some software engineers, who had
previously thought computational search inadmissible in their areas of activity.
However, now that SBSE is a mature [7] and well-established ‘standard’ ap-
proach to software engineering [9,11], the SBSE research agenda should become
more ambitious in order to continue to stimulate further development.

One area in which more work is needed lies in the development of techniques
that are human competitive, a long-sought goal of all optimisation approaches.
Such results are inherently compelling demonstrations of the value of SBSE
for which the scientific evidence should be sufficient to convince even the most
skeptical software engineer.

Recent work has produced specific claims for human competitive results in
SBSE [19], while much other SBSE work is already implicitly partly human
competitive, since it automates aspects of software engineering for which human
effort is simply too expensive [11, 15, 17]. In this paper we seek to go a step
further. We seek not only to demonstrate that our SBSE results are human

competitive, but also that we have provably optimal results in an area for which
many years of human effort have been expended by very capable scientists to
construct just such optimal results.

The area for which we are able to demonstrate provably optimal and human
competitive results is fault localisation. We focus on Spectrum-Based Fault Lo-
calisation (SBFL), a well-known and widely-studied fault localisation approach.
SBFL ranks statements according to a risk evaluation formula. The faulty state-
ment should ideally be ranked at the top. Designing an effective risk evaluation
formula has been one of the most widely studied aspects of SBFL: known for-
mulæ include Tarantula [14], Ochiai [1], Wong [20] and many others.

There has been more than a decade of risk evaluation formulæ development,
all of which has remained entirely manual. This development has called upon the
considerable ingenuity of many different groups of researchers, all of which have
peer-reviewed expertise and results on the introduction of each of their proposed
formulæ. Therefore, any approach which could automatically find an equivalent
or better performing formula would clearly be human competitive, and at the
highest level of intellectual challenge too.

Recently, Genetic Programming (GP) has been successfully applied to au-
tomatic design of risk evaluation formulæ [23]. Empirical results showed that,
among the 30 GP-evolved formulæ, six are very effective and can outperform
some human-designed formulæ. However, this analysis was entirely empirical;
we cannot be sure that the evaluation formulæ found by our GP approach are
always superior.

Fortunately, Xie et al. developed a framework to support the theoretical
analysis of risk evaluation formulæ performance [21, 22]. Xie et al. analysed
30 manually designed risk evaluation formulæ, identifying a fault localisation
effectiveness hierarchy between formulæ. The results of the theoretical analysis
showed that there exist two maximal groups of human defined formulæ, namely
ER1 and ER5, for programs with single fault.

In this paper, we apply the same theoretical framework to the 30 GP-evolved
formulæ discovered by GP and reported by Yoo at SSBSE 2012 [23]. The results
show that, among these 30 GP-evolved formulæ, four formulæ, namely GP02,
GP03, GP13, and GP19 are optimal: GP13 is proved to be equivalent to the
human-discovered optima ER1, while the remaining three formulæ form three
distinct and entirely new groups of optima.

Interestingly, some of the optimal GP-evolved formulæ display characteris-
tics that are best described as ‘unintuitive’. This is a common observation for
computational search; it finds niche results that are not always obvious and
sometimes highly counter-intuitive; SBSE is no exception [11]. Since our results
are both optimal, yet counter-intuitive, they are not only human competitive
with respect to the past decade of human effort, but also unlikely to have been
discovered by further decade of human effort.

The contributions of this paper are as follows:

– We prove that one of the risk-evaluation formulæ from the previous work [23]
belongs to the same equivalence group as two known maximal formulæ,

extending the maximal group ER1 [21] to ER1’. This shows provable human
competitiveness for the first time in SBSE.

– We also prove that three other formulæ from the previous work [23] form
their own maximal groups.

– Our analysis of the evolved formulæ shows the flexibility of GP in designing
risk evaluation formulæ. For some formulæ, GP follows the same design
intuition as humans; for others, GP does not conform to the human intuition
but still produces maximal formulæ.

The rest of the paper is organised as follows. Section 2 describes the founda-
tions of Spectrum-Based Fault Localisation (SBFL) and the theoretical frame-
work that uses set-membership to provably compare risk evaluation formulæ.
Section 3 contains proofs of maximality for GP02, GP03, GP13, and GP19. Sec-
tion 4 discusses the insights gained from an in-depth analysis of GP-evolved
formulæ. Section 5 presents related work and Section 6 concludes.

2 Background

2.1 Spectrum-Based Fault Localisation (SBFL)

SBFL uses testing results and program spectrum to do fault localisation. The
testing result is whether a test case is failed or passed. While the program spec-
trum records the run-time profiles about various program entities for a specific
test suite. The program entities could be statements, branches, paths, etc.; and
the run-time information could be the binary coverage status, the execution fre-
quency, etc. The most widely used program spectrum involves statement and its
binary coverage status in a test execution [2, 14].

TS:
(
t1 t2 . . . tm

)

PG:


s1
s2
.
.
.
sn

MS:


1/0 1/0 . . . 1/0
1/0 1/0 . . . 1/0

. . .

. . .

. . .
1/0 1/0 . . . 1/0


RE:

(
p/f p/f . . . p/f

)
Fig. 1. Information for conventional SBFL

Consider a program PG=<s1, s2, ..., sn> with n statements and a test suite
of m test cases TS={t1, t2, ..., tm}. Figure 1 shows the information required by
SBFL. RE records all the testing results, in which p and f indicate passed and
failed, respectively. Matrix MS represents the program spectrum, where the (ith,
jth) element represents the coverage information of statement si, by test case
tj , with 1 indicating si is executed, and 0 otherwise. In fact, the jth column
represents the execution slice of tj .

For each statement si, its relevant testing result can be represented as a tuple
i=(eif , e

i
p, n

i
f , n

i
p), where eif and eip represent the number of test cases in TS that

execute it and return the testing result of failure or pass, respectively; ni
f and

ni
p denote the number of test cases that do not execute it, and return the testing

result of failure or pass, respectively. A risk evaluation formula R is then applied
to the tuple corresponding to each statement si to calculate the suspiciousness
score that indicates its risk of being faulty. Ideally, the faulty statement should
be at or near the top of the ranking, so that the developer can save time if the
program statements are examined following the ranking order.

The most commonly adopted intuition in designing risk evaluation formulæ is
that statements associated with more failed or less passed testing results should
not have lower risks. Formulæ that comply with this intuition include Taran-
tula [12], Jaccard [4], Ochiai [1], Naish1 and Naish2 [16], among others.

2.2 Theoretical framework

With the development of more and more risk evaluation formulæ, people began to
investigate their performance. Xie et al. [21] have recently developed a theoretical
framework to analysis the performance between different formulæ. Since we will
apply this theoretical framework in this paper, thus we briefly describe it before
presenting the analysis on GP-evolved formulæ.

Definition 1. Given a program with n statements PG=<s1, s2, ..., sn>, a test
suite of m test cases TS={t1, t2, ..., tm}, and a risk evaluation formula R, which
assigns a risk value to each program statement. For each statement si, a vector
i=<eif , e

i
p, n

i
f , n

i
p> can be constructed from TS, and R(si) is a function of i. For

any faulty statement sf , following three subsets are defined.

SR
B = {si∈S|R(si)>R(sf), 1≤i≤n}

SR
F = {si∈S|R(si)=R(sf), 1≤i≤n}

SR
A = {si∈S|R(si)<R(sf), 1≤i≤n}

That is, SR
B , SR

F and SR
A consist of statements of which the risk values are

higher than, equal to and lower than the risk value of sf , respectively.
In practice, a tie-breaking scheme may be required to determine the order of

the statements with same risk values. The theoretical analysis only investigates
consistent tie-breaking schemes, which are defined as follows.

Definition 2. Given any two sets of statements S1 and S2, which contain el-
ements having the same risk values. A tie-breaking scheme returns the ordered
statement lists O1 and O2 for S1 and S2, respectively. The tie-breaking scheme
is said to be consistent, if all elements common to S1 and S2 have the same
relative order in O1 and O2.

The effectiveness measurement is referred to as Expense metric, which is the
percentage of code that needs to be examined before the faulty statement is
identified [23]. A lower Expense of formula R indicates a better performance.

Let E1 and E2 denote the Expenses with respect to the same faulty statement
for risk evaluation formulæ R1 and R2, respectively. We define two types of
relations between R1 and R2 as follows.

Definition 3 (Better). R1 is said to be better than R2 (denoted as R1 → R2)
if for any program, faulty statement sf , test suite and consistent tie-breaking
scheme, we have E1≤E2.

Definition 4 (Equivalent). R1 and R2 are said to be equivalent (denoted as
R1 ↔ R2), if for any program, faulty statement sf , test suite and consistent
tie-breaking scheme, we have E1=E2.

It is obvious from the definition that R1 → R2 means R1 is equal to or more
effective than R2. As a reminder, if R1 → R2 holds but R2 → R1 does not hold,
R1 → R2 is said to be a strictly “better” relation. In the theoretical framework,
there are several assumptions, which are listed as follows.

1. A testing oracle exists, that is, for any test case, the testing result of either
fail or pass can be decided.

2. We have the assumption of perfect bug detection that the fault can always
be identified once the faulty statement is examined.

3. We exclude omission faults, because SBFL is designed to assign risk values
to the existent statements.

4. We assume that the test suite contains at least one passing test case and one
failing test case.

As a reminder, our analysis only focuses on statements that are covered by
the given test suite (that is, any statement si such that eip + eif > 0). This is
because a statement that is never covered by any test case in the given test
suite cannot be the faulty statement that triggers the observed failure and hence
should be ignored (or effectively deemed to have the lowest risk values). For
readers who are interested in all the detailed justifications, validity and impacts
of the above assumptions, please refer to [21].

Given a test suite TS, let T denote its size, F denote the number of failed
test cases and P denote the number of passed test cases. Immediately after the
definitions and the above assumptions, we have 1≤F<T , 1≤P<T , and P+F=T ,
as well as the following lemmas.

Lemma 1. For any i=<eif , e
i
p, n

i
f , n

i
p>, we have eif+eip>0, eif+ni

f=F , eip+ni
p=P ,

eif≤F and eip≤P .

Lemma 2. For any faulty statement sf with f=<eff , e
f
p , n

f
f , n

f
p>, if sf is the

only faulty statement in the program, we have eff=F and nf
f=0.

A sufficient condition for the equivalence between two risk evaluation formu-
lae is as follows.

Theorem 1. Let R1 and R2 be two risk evaluation formulæ. If we have SR1

B =SR2

B ,

SR1

F =SR2

F and SR1

A =SR2

A for any program, faulty statement sf and test suite, then
R1 ↔ R2.

Xie et al. [21] have applied the above theoretical framework on 30 manually
designed formulæ, identifying two groups of most effective formulæ for programs
with single fault, namely the maximal groups of formulæ. The definition of max-
imal formula is as follows.

Definition 5. A risk evaluation formula R1 is said to be a maximal formula of
a set of formulæ, if for any element R2 of this set of formulæ, R2 → R1 implies
R2 ↔ R1.

3 Theoretical analysis of GP-evolved risk evaluation
formulæ

3.1 Risk evaluation formulæ generated by GP

Yoo [23] has generated 30 GP-evolved formulæ. There are 10 out of the 30 for-
mulæ which need unreasonable additional assumptions, and, hence, are excluded
in this study1. Therefore, our investigation will focus on the remaining 20 for-
mulæ (namely, GP01, GP02, GP03, GP06, GP08, GP11, GP12, GP13, GP14,
GP15, GP16, GP18, GP19, GP20, GP21, GP22, GP24, GP26, GP28 and GP30).
As a reminder, the following analysis is for programs with single fault.

The above mentioned theoretical framework has proved the equivalence of
the formulae within ER1 (consists of Naish1 and Naish2) and ER5 (consists of
Wong1, Russel & Rao, and Binary), as well as their maximality, for programs
with single fault [22]. By using the theoretical framework above, we are able to
prove that among the 20 GP-evolved formulæ, GP02, GP03, GP13 and GP19
are maximal formulæ for programs with single fault. More specifically, GP02,
GP03 and GP19 are distinct maximal formulæ to ER1 and ER5; while GP13
is equivalent to ER1. In the following discussion, the group which consists of
Naish1, Naish2 and GP13 will be referred to as ER1’. We have also proved that
ER1’ is strictly better than all the other remaining 16 GP-evolved formulæ under
investigation. However, since the focus of this paper is to identify the maximal
(that is, maximally effective) GP-evolved formulæ, we will only provide the de-
tailed proofs for the maximality of GP02, GP03, GP13 and GP19. Definitions
of the involved formulæ are listed in Table 1.

3.2 Maximal GP-evolved risk evaluation formulæ

Before presenting our proof, we need the following lemmas for ER1 (consists of
Naish1 and Naish2) and GP13.

1 The reason for exclusion is primarily to avoid division by zero. For example,
GP04 [23] contains 1

ep−np
, i.e., it assumes ep 6= np. We consider assumptions of

this kind unrealistic.

Table 1. Investigated formulæ

Name Formula expression

ER1’
Naish1

{
−1 if ef<F
P − ep if ef=F

Naish2 ef − ep
ep+np+1

GP13 ef (1 + 1
2ep+ef

)

ER5
Wong1 ef

Russel & Rao
ef

ef+nf+ep+np

Binary

{
0 if ef<F
1 if ef=F

GP02 2(ef +
√
np) +

√
ep

GP03
√
|e2f −

√
ep|

GP19 ef
√
|ep − ef + nf − np|

Lemma 3. For Naish1 and Naish2, which are shown to be equivalent to each
other in the previous work [22], we have SN1

B =SN2
B =XOp, SN1

F =SN2
F =Y Op and

SN1
A =SN2

A =ZOp, where

XOp={si|eif=F and efp>eip, 1≤i≤n} (1)

Y Op={si|eif=F and efp=eip, 1≤i≤n} (2)

ZOp=S\XOp\Y Op (3)

Lemma 4. For GP13, we have SGP13
B =XOp, SGP13

F =Y Op and SGP13
A =ZOp,

respectively.

Proof. Since eff=F , it follows immediately from the definition of GP13 that

SGP13
B ={si|eif (1+

1

2eip + eif
)>F (1+

1

2efp+F
), 1≤i≤n} (4)

SGP13
F ={si|eif (1+

1

2eip + eif
)=F (1+

1

2efp+F
), 1≤i≤n} (5)

1. To prove that SGP13
B = XOp.

(a) To prove XOp⊆SGP13
B .

For any si∈XOp, we have F (1+ 1
2eip+F)>F (1+ 1

2efp+F
) because efp>eip and

F>0. Since eif=F , we have eif (1+ 1
2eip+eif

)>F (1+ 1

2efp+F
), which implies

si∈SGP13
B . Thus, we have proved XOp⊆SGP13

B .
(b) To prove SGP13

B ⊆XOp.
For any si∈SGP13

B , we have eif (1+ 1
2eip+eif

)>F (1+ 1

2efp+F
). Let us consider

the following two exhaustive cases.

– Case (i) eif<F . First, consider the sub-case that eif=0. Then we

have eif (1+ 1
2eip+eif

)=0. It follows from the definition of SGP13
B that

0>F (1+ 1

2efp+F
), which is however contradictory to F>0 and efp≥0.

Thus, it is impossible to have eif=0. Now, consider the sub-case that

0<eif<F . After re-arranging the terms, the expression eif (1+ 1
2eip+eif

)−

F (1+ 1

2efp+F
) becomes (

eif
2eip+eif

− F

2efp+F
) − (F−eif). Since 0<eif<F ,

this expression can be further re-written as (1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)−(F−eif).

Since
eip
eif
≥0 and

efp
F ≥0, we have 0< 1

1+2
eip

ei
f

≤1 and 0< 1

1+2
e
f
p
F

≤1. As

a consequence, we have (1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)<1. Since both F and eif

are positive and non-negative integers, respectively, eif<F implies

(F−eif)≥1. Thus, we have (1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)−(F−eif)<0, which how-

ever is contradictory to eif (1+ 1
2eip+eif

)>F (1+ 1

2efp+F
). Therefore, it

is impossible to have 0<eif<F . Therefore, we have proved that if

si∈SGP13
B , we cannot have eif<F .

– Case (ii) eif=F . Assume further eip≥efp . Obviously, we have F (1 +
1

2eip+F)≤F (1+ 1

2efp+F
), which can be re-written as eif (1+ 1

2eip+eif
) ≤

F (1+ 1

2efp+F
). However, this is contradictory to F (1+ 1

2eip+F) > F (1+

1

2efp+F
). Thus, the only possible case is efp>eip.

Therefore, we have proved that if si∈SGP13
B , then eif=F and efp>eip,

which imply si∈XOp. Therefore, SGP13
B ⊆XOp.

In conclusion, we have proved XOp⊆SGP13
B and SGP13

B ⊆XOp. Therefore,
SGP13
B = XOp.

2. To prove that SGP13
F = Y Op.

(a) To prove Y Op⊆SGP13
F .

For any si∈Y Op, we have eif (1+ 1
2eip+eif

)=F (1+ 1

2efp+F
) because eif=F and

efp=eip. After the definition of SGP13
F , si∈SGP13

F . Thus, we have proved

Y Op⊆SGP13
F .

(b) To prove SGP13
F ⊆Y Op.

For any si∈SGP13
F , we have eif (1+ 1

2eip+eif
)=F (1+ 1

2efp+F
). Let us consider

the following two exhaustive cases.
– Case (i) eif<F . First, consider the sub-case that eif=0. Then we

have eif (1+ 1
2eip+eif

)=0. It follows from the definition of SGP13
F that

0=F (1+ 1

2efp+F
), which is however contradictory to F>0 and efp≥0.

Thus, it is impossible to have eif=0. Now, consider the sub-case

that 0<eif<F . Similar to the above proof of SGP13
B ⊆XOp, we can

prove that (1

1+2
eip

ei
f

− 1

1+2
e
f
p
F

)<(F−eif), which is however contradic-

tory to eif (1+ 1
2eip+eif

)=F (1+ 1

2efp+F
). Therefore, it is impossible to

have 0<eif<F . Therefore, we have proved that if si∈SGP13
F , then we

cannot have eif<F .

– Case (ii) eif=F . Assume further eip 6=efp . Obviously, we have F (1 +
1

2eip+F) 6= F (1+ 1

2efp+F
), which can be re-written as eif (1 + 1

2eip+eif
) 6=

F (1 + 1

2efp+F
). However, this is contradictory to eif (1 + 1

2eip+eif
) =

F (1 + 1

2efp+F
). Thus, the only possible case is efp=eip.

We have proved that if si∈SGP13
F , then eif=F and efp=eip, which imply

si∈Y Op. Therefore, SGP13
F ⊆Y Op.

In conclusion, we have proved Y Op⊆SGP13
F and SGP13

F ⊆Y Op. Therefore, we
have SGP13

F = Y Op.
3. To prove that SGP13

A = ZOp.
After Definition 1, we have SGP13

A =S\SGP13
B \SGP13

F and ZOp=S\XOp\Y Op,
where S denotes the set of all investigated statements. Since we have proved
SGP13
B = XOp and SGP13

F = Y Op, it is obvious that SGP13
A = ZOp.

Now, we are ready to prove that GP13, Naish1 and Naish2 belong to the
same group of equivalent formulæ (referred to as ER1’).

Proposition 1. GP13 ↔ Naish1 and GP13 ↔ Naish2.

Proof. Refer to Lemma 3 and Lemma 4, we have SN1
B = SN2

B = SGP13
B , SN1

F =
SN2
F = SGP13

F and SN1
A =SN2

A =SGP13
A , respectively. After Theorem 1, GP13 ↔

Naish1 and GP13 ↔ Naish2.

Apart from GP13, we have three new maximal GP-evolved formulæ for pro-
grams with single fault, namely, GP02, GP03 and GP19. Unlike GP13, these
three formulæ do not belong to ER1’ or ER5.

Proposition 2. GP02, GP03, GP19, ER1’ and ER5 are distinct maximal for-
mulæ (or groups of equivalent formulæ).

Proof. To prove this, we will demonstrate that neither R1 → R2 nor R2 →
R1 is held, where R1 and R2 are any two of these five formulæ (or groups of
equivalent formulæ). Consider the following two program PG1 and PG2 as shown
in Figure 2 and Figure 3, respectively. Suppose two test suites TS11 and TS12
are applied on PG1 and two test suites TS21 and TS22 are applied on PG2.
Vector i with respect to these test suites and programs are listed in Table 2.

Table 3 lists the statement divisions for these five formulæ with respect to
TS11 and TS12 applied on PG1, while Table 4 lists the statement divisions for
these five formulæ with respect to TS21 and TS22 applied on PG2.

Suppose we adopt the “ORIGINAL ORDER” as the tie-breaking scheme.
Then the corresponding rankings of the faulty statement for these five formulæ
are as Table 5. From this table, we have demonstrated that

Fig. 2. Program PG1 Fig. 3. Program PG2

Table 2. i for PG1 and PG2 with different test suites

Statement
i=<eif , e

i
p, n

i
f , n

i
p>

TS11 TS12 TS21 TS22

s1 <1, 6, 0, 0> <1, 8, 0, 0> <2, 15, 0, 0> <10, 15, 0, 0>

s2 <0, 1, 1, 5> <0, 6, 1, 2> <0, 1, 2, 14> <0, 1, 10, 14>

s3 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s4 <1, 4, 0, 2> <1, 1, 0, 7> <1, 7, 1, 8> <9, 0, 1, 15>

s5 <0, 1, 1, 5> <0, 1, 1, 7> <1, 7, 1, 8> <1, 14, 9, 1>

s6 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s7 <1, 4, 0, 2> <1, 1, 0, 7> <1, 8, 1, 7> <5, 6, 5, 9>

s8 <0, 1, 1, 5> <0, 1, 1, 7> <1, 6, 1, 9> <5, 8, 5, 7>

s9 <1, 5, 0, 1> <1, 2, 0, 6> <2, 14, 0, 1> <10, 14, 0, 1>

s10 <1, 4, 0, 2> <1, 1, 0, 7> <1, 9, 1, 6> <1, 12, 9, 3>

s11 <0, 1, 1, 5> <0, 1, 1, 7> <1, 5, 1, 10> <9, 2, 1, 13>

– With TS12 ER1’ → GP02 does not hold; with TS21 GP02 → ER1’ does
not hold.

– With TS12 ER5 → GP02 does not hold; with TS21 GP02 → ER5 does not
hold

– With TS11 ER1’ → GP03 does not hold; with TS12 GP03 → ER1’ does
not hold.

– With TS11 ER5 → GP03 does not hold; with TS12 GP03 → ER5 does not
hold.

– With TS11 ER1’ → GP19 does not hold; with TS12 GP19 → ER1’ does
not hold.

– With TS11 ER5 → GP19 does not hold; with TS12 GP19 → ER5 does not
hold.

Table 3. Statement division for PG1 with TS11 and TS12

Statement TS11 TS12

ER1’
SR
B = {s4, s7, s10} SR

B = {s4, s7, s10}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s5, s8, s11} SR

A = {s1, s2, s5, s8, s11}

ER5
SR
B = ∅ SR

B = ∅
SR
F = {s1, s3, s4, s6, s7, s9, s10} SR

F = {s1, s3, s4, s6, s7, s9, s10}
SR
A = {s2, s5, s8, s11} SR

A = {s2, s5, s8, s11}

GP02
SR
B = {s4, s7, s10} SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s5, s8, s11} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

GP03
SR
B = {s1} SR

B = {s1, s2, s5, s8, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s4, s7, s10}

GP19
SR
B = {s1} SR

B = {s1, s4, s7, s10}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s5, s8, s11}

– With TS11 GP02 → GP03 does not hold; with TS12 GP03 → GP02 does
not hold.

– With TS11 GP02 → GP19 does not hold; with TS12 GP19 → GP02 does
not hold.

– With TS21 GP03 → GP19 does not hold; with TS22 GP19 → GP03 does
not hold.

In summary, we have proved that for any two of these five formulæ (or groups
of equivalent formulæ) R1 and R2, neither R1 → R2 nor R2 → R1 is held.
Therefore, GP02, GP03, GP19, ER1’ and ER5 are five distinct maximal formulæ
(or groups of equivalent formulæ).

4 Discussion

Yoo [23] used a small number of programs and faults to evolve new risk evaluation
formulæ: more precisely, four subject programs and 20 mutants for evolution.
To quote Yoo, “the results should be treated with caution” since “there is no
guarantee that the studied programs and faults are representative of all possible
programs and faults”.

In this paper, we use the theoretical framework recently proposed by Xie
et al. [21] to analyse Yoo’s GP-evolved risk evaluation formulæ for programs
with single fault. Among Yoo’s formulæ, four have been proved to be maximal,
namely, GP02, GP03, GP13 and GP19, where GP13 forms a new maximal group
of equivalent formulæ with Naish1 and Naish2. This new maximal group is re-
ferred to as ER1’); while GP02, GP03 and GP19 are distinct to ER1’ and ER5.
Moreover, ER1’ is strictly better than the remaining 16 GP-evolved formulæ
under investigation.

Results in this paper are exempt from the inherent disadvantages of exper-
imental studies, and hence are definite conclusions for any program and fault

Table 4. Statement division for PG2 with TS21 and TS22

Statement TS21 TS22

ER1’
SR
B = ∅ SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2, s4, s5, s7, s8, s10, s11} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

ER5
SR
B = ∅ SR

B = ∅
SR
F = {s1, s3, s6, s9} SR

F = {s1, s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s4, s5, s7, s8, s10, s11}

GP02
SR
B = {s4, s5, s7, s8, s10, s11} SR

B = {s4, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1, s2} SR

A = {s1, s2, s5, s7, s8, s10}

GP03
SR
B = {s2, s4, s5, s7, s8, s10, s11} SR

B = ∅
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s1} SR

A = {s1, s2, s4, s5, s7, s8, s10, s11}

GP19
SR
B = {s1} SR

B = {s1, s4, s11}
SR
F = {s3, s6, s9} SR

F = {s3, s6, s9}
SR
A = {s2, s4, s5, s7, s8, s10, s11} SR

A = {s2, s5, s7, s8, s10}

Table 5. Rankings of faulty statement for five formulæ

Statement
PG1 (sf=s9) PG2 (sf=s3)

TS11 TS12 TS21 TS22

ER1’ 6 6 1 1

ER5 6 6 2 2

GP02 6 3 7 3

GP03 4 8 8 1

GP19 4 7 2 4

under the assumptions that are commonly adopted by the SBFL community. It
is a surprise that without exhausting all possible programs and faults, GP can
still deliver maximal formulæ. Moreover, the process of evolving a risk evaluation
formula is totally automatic and does not need any human intelligence. Thus,
the cost of designing risk evaluation formulæ can be significantly reduced.

From analysing formulæ in ER1’, we note some common features. First, they
all involve two independent parameters2 ef and ep. Secondly, all these three
formulæ comply with the commonly adopted intuition that statements asso-
ciated with more failed or less passed testing results should never have lower
risks. Finally, in all these three formulæ, any statement si with eif<F always

has lower risk value than statement sj with ejf=F . With respect to ER1’, the
evolved formula follows the known intuition. However, interestingly enough, the
other maximal formulæ, GP02, GP03, and GP19, do not conform to the same
intuition. Let us elaborate. Given two statements, s1 and s2:

2 By definition, np = P−ep and nf = F−ef .

– GP02: If ep
1=ep

2, then ef
1>ef

2 implies GP02(s1)>GP02(s2), which is con-
sistent with the commonly adopted intuition. However, if ef

1=ef
2, then

ep
1<ep

2 does not necessarily imply GP02(s1)≥GP02(s2). For example, ef
1 =

ef
2 = 1, P=8, ep

1=1 and ep
2=2, then we have GP02(s1)=2·(1+

√
8− 1)+1,

which is less than GP02(s2)=2 · (1 +
√

8− 2) +
√

2. This does not comply
with the commonly adopted intuition.

– GP03: If ep
1 = ep

2, then ef
1 > ef

2 does not necessarily imply GP03(s1)
≥ GP03(s2). For example, ep

1=ep
2=25, ef

1=2 and ef
2=1, then we have

GP03(s1)=1, which is less than GP03(s2)=2. This does not comply with the
commonly adopted intuition. Moreover, if ef

1=ef
2, then ep

1<ep
2 does not

necessarily imply GP03(s1)≥GP03(s2). For example, ef
1=ef

2=1, ep
1=16

and ep
2=25, then we have GP03(s1)=

√
3, which is less than GP03(s2)=2.

As a consequence, the commonly adopted intuition is not complied.

– GP19: If ep
1=ep

2, then ef
1>ef

2 does not necessarily imply GP19(s1) ≥
GP19(s2). For example, P=20, ep

1=ep
2=10; F=4, ef

1=2 and ef
2=1, then

we have GP19(s1)=0, which is less than GP19(s2)=
√

2. This example demon-
strates that the commonly adopted intuition is not complied. Moreover,
if ef

1=ef
2, then ep

1<ep
2 does not necessarily imply GP19(s1)≥GP19(s2).

For example, F=2, ef
1=ef

2=1; P=10, ep
1=8 and ep

2=9, then we have
GP19(s1)=

√
6, which is less than GP19(s2)=

√
8. This does not comply with

the commonly adopted intuition.

Formulæ defined by human beings are more likely to be confined to the
perceived intuition and background of the designer. Thus, it is possible that
some maximal formulæ may be overlooked by humans. However, GP does not
suffer from this problem and has the advantage of being unbiased. As explained
in the above examples for GP02, GP03 and GP19, GP is able to define maximal
formulæ based on intuitions that humans would rarely consider.

5 Related Work

Spectrum-Based Fault Localisation (SBFL) is also referred to as statistical fault
localisation: it aims to identify statements that are suspected to contain the root
cause for software failure by examining a large number of passing and failing
test executions. Tarantula [14] was the first SBFL risk evaluation formula that
originally started its life as a visualisation tool. Many other formulaæ followed,
applying different statistical analysis to compute the ranking of suspiciousness
statements [2, 3, 5, 18, 20], all of which have been designed manually: Yoo [23] is
the first to use Genetic Programming to automatically evolve an SBFL formula.

The predominant method for evaluating SBFL risk evaluation formulæ in
the literature has been empirical studies [6, 13,24]. However, recent advances in
theoretical analysis of SBFL have provided optimality proof for specific program
structures [16], as well as proofs of equivalence/dominance relations for arbitrary
combinations of faulty source code and test suites [21].

6 Conclusion

Search-based techniques have been widely used in software engineering, such
as testing, maintenance, etc [8, 10]. Recently, Yoo [23] has successfully utilized
a search-based technique, namely, Genetic Programming, to generate effective
risk evaluation formulæ for SBFL. In this paper, by using the recently developed
theoretical framework by Xie et al. [21] on Yoo’s GP-evolved formulæ, we have
demonstrated that four formulæ are maximal for programs with single fault,
namely, GP02, GP03, GP13 and GP19. The results provide a strong support
that Genetic Programming can be an ideal tool for designing risk evaluation
formulæ. GP not only can deliver maximal formulæ having the same features as
some maximal formulæ designed by humans, but also can help to provide novel
insights and intuitions about effective formulæ that humans may overlook.

Acknowledgement

This work was partly funded by the Engineering and Physical Sciences Research
Council [grant no. EP/J017515/1] and the Australian Research Council [grant
no. DP 120104773].

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: An evaluation of similarity co-
efficients for software fault localization. In: Proceedings of the 12th Pacific Rim
International Symposium on Dependable Computing. pp. 39–46. Riverside, USA
(2006)

2. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: An observation-based model for
fault localization. In: Proceedings of the 2008 international workshop on dynamic
analysis: held in conjunction with the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2008). pp. 64–70. WODA ’08, ACM,
New York, NY, USA (2008)

3. Artzi, S., Dolby, J., Tip, F., Pistoia, M.: Directed test generation for effective
fault localization. In: Proceedings of the 19th international symposium on Software
testing and analysis. pp. 49–60. ISSTA ’10, ACM, New York, NY, USA (2010)

4. Chen, M., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem determi-
nation in large, dynamic internet services. In: Proceedings of the 32th IEEE/IFIP
International Conference on Dependable Systems and Networks. pp. 595–604.
Washington DC, USA (2002)

5. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight bug localization with ample. In:
Proceedings of the sixth international symposium on Automated analysis-driven
debugging. pp. 99–104. AADEBUG’05, ACM, New York, NY, USA (2005)

6. DiGiuseppe, N., Jones, J.A.: On the influence of multiple faults on coverage-based
fault localization. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. pp. 210–220. ISSTA 2011, ACM, New York, NY, USA (2011)

7. Freitas, F., Souza, J.: Ten years of search based software engineering: A bibliomet-
ric analysis. In: Cohen, M., Ó Cinnéide, M. (eds.) Search Based Software Engi-
neering, Lecture Notes in Computer Science, vol. 6956, pp. 18–32. Springer Berlin
Heidelberg (2011)

8. Harman, M., Jones, B.: Search based software engineering. Information and Soft-
ware Technology 43(14), 833–839 (2001)

9. Harman, M.: The current state and future of search based software engineering.
In: FOSE ’07: 2007 Future of Software Engineering. pp. 342–357. IEEE Computer
Society, Washington, DC, USA (2007)

10. Harman, M.: The relationship between search based software engineering and pre-
dictive modeling. In: Proceedings of the 6th International Conference on Predictive
Models in Software Engineering. pp. 1:1–1:13. Timişoara, Romania (2010)

11. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Computing Surveys 45(1), 11:1–11:61
(December 2012)

12. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist
fault localization. In: Proceedings of the 24th International Conference on Software
Engineering. pp. 467–477. Florida, USA (2002)

13. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-
localization technique. In: Proceedings of the 20th International Conference on
Automated Software Engineering (ASE2005). pp. 273–282. ACM Press (2005)

14. Jones, J.A., Harrold, M.J., Stasko, J.T.: Visualization for fault localization. In:
Proceedings of ICSE Workshop on Software Visualization. pp. 71–75 (2001)

15. McMinn, P.: Search-based software test data generation: A survey. Software Test-
ing, Verification and Reliability 14(2), 105–156 (Jun 2004)

16. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Transactions on Software Engineering Methodology 20(3), 11:1–
11:32 (August 2011)

17. Räihä, O.: A survey on search-based software design. Computer Science Review
4(4), 203–249 (2010)

18. Renieres, M., Reiss, S.: Fault localization with nearest neighbor queries. In: Pro-
ceedings of the 18th International Conference on Automated Software Engineering.
pp. 30 – 39 (October 2003)

19. de Souza, J.T., Maia, C.L., de Freitas, F.G., Coutinho, D.P.: The human competi-
tiveness of search based software engineering. In: Proceedings of 2nd International
Symposium on Search based Software Engineering (SSBSE 2010). pp. 143–152.
IEEE Computer Society Press, Benevento, Italy (2010)

20. Wong, W.E., Qi, Y., Zhao, L., Cai, K.Y.: Effective fault localization using code
coverage. In: Proceedings of the 31st Annual International Computer Software
and Applications Conference - Volume 01. pp. 449–456. COMPSAC ’07, IEEE
Computer Society, Washington, DC, USA (2007)

21. Xie, X.Y., Chen, T.Y., Kuo, F.C., Xu: A Theoretical Analysis of the Risk Eval-
uation Formulas for Spectrum-Based Fault Localization. Accepted by the ACM
Transactions on Software Engineering and Methodology (2012)

22. Xie, X.: On the analysis of spectrum-based fault localization. Ph.D. thesis, Swin-
burne University of Technology (May 2012)

23. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) Search Based Software Engineering, Lec-
ture Notes in Computer Science, vol. 7515, pp. 244–258. Springer Berlin Heidelberg
(2012)

24. Yu, Y., Jones, J.A., Harrold, M.J.: An empirical study of the effects of test-suite
reduction on fault localization. In: Proceedings of the International Conference on
Software Engineering (ICSE 2008). pp. 201–210. ACM Press (May 2008)

