Ask the Mutants: Mutating Faulty Programs for Fault Localization

Seokhyeong Moon, Yunho Kim, Moonzoo Kim
CS Dept. KAIST, South Korea
{seokhyeong.moon, kimyunho}@kaist.ac.kr, moonzoo@cs.kaist.ac.kr

Shin Yoo
CS Dept. University College London, UK
shin.yoo@ucl.ac.uk

Abstract—We present MUSE (MUtation-baSEd fault localization technique), a new fault localization technique based on mutation analysis. A key idea of MUSE is to identify a faulty statement by utilizing different characteristics of two groups of mutants—one that mutates a faulty statement and the other that mutates a correct statement. We also propose a new evaluation metric for fault localization techniques based on information theory, called Locality Information Loss (LIL): it can measure the aptitude of a localization technique for automated fault repair systems as well as human debuggers. The empirical evaluation using 14 faulty versions of the five real-world programs shows that MUSE localizes a fault after reviewing 7.4 statements on average, which is about 25 times more precise than the state-of-the-art SBFL technique Op2.

I. INTRODUCTION

Fault Localization (FL) is an expensive phase in the whole debugging activity because it usually takes human effort to understand the complex internal logic of the Program Under Test (PUT) and reason about the differences between passing and failing test runs. As a result, automated fault localization techniques have been widely studied.

One such technique is Spectrum-based Fault Localization (SBFL). It uses program spectra, i.e. summarized profile of test suite executions, to rank program statements according to their predicted risk of containing the fault. A developer, then, is to inspect PUT following the order of statements in the given ranking, in the hope that the faulty statement will be encountered near the top of the ranking

SBFL has received much attention, with a heavy emphasis on designing new risk evaluation formulas [3] [14] [27] [31], but also on theoretical analysis of optimality and hierarchy between formulas [19] [28] [29]. However, it has also been criticized for their impractical accuracy and the unrealistic usage model that is the linear inspection of the ranking [22]. This is partly due to the limitations in the spectra data that SBFL techniques rely on. The program spectrum used by these techniques is simply a combination of the control flow of PUT and the results from test cases. Consequently, all statements in the same basic block share the same spectrum and, therefore, the same ranking. This often inflates the number of statements needed to be inspected before encountering the fault.

This paper presents a novel fault localization technique called MUSE, MUtation-baSEd fault localization technique, to overcome this problem. MUSE uses mutation analysis to uniquely capture the relationship between individual program statements and the observed failures. It is free from the coercion of shared ranking from the block structure. The basic mutation testing is defined as artificial injection of syntactic faults [1]. However, we focus on what happens when we mutate an already faulty program and, particularly, the faulty program statement. Intuitively, since a faulty program can be repaired by modifying faulty statements, mutating (i.e., modifying) faulty statements will make more failed test cases pass than mutating correct statements. In contrast, mutating correct statements will make more passed test cases fail than mutating faulty statements. This is because mutating correct statements introduces new faulty statements in addition to the existing faulty statements in a PUT. These two observations form the basis of the design of our new metric for fault localization (Section II-A).

We also propose a new evaluation metric for fault localization techniques that is not tied to the ranking model. The traditional evaluation metric in SBFL literature is the Expense metric, which is the percentage of program statements the human developer needs to inspect before encountering the faulty one [18]. However, recent work showed that the Expense metric failed to account for the performance of the automated program repair tool that used various SBFL techniques to locate the fix: techniques proven to rank the faulty statement higher than others actually performed poorer when used in conjunction with a repair tool [23].

Our new evaluation metric, LIL (Locality Information Loss), actually measures the loss of information between the true locality of the fault and the predicted locality from a localization technique, using information theory. It can be applied to any fault localization technique (not just SBFL) and to describe localization of any number of faults.

Using both the traditional Expense metric and the LIL, we evaluate MUSE against 14 faulty versions of five real-world programs. The results show that MUSE is, on average, about 25 times more accurate than Op2 [19], the current state-of-the-art SBFL technique. In addition, MUSE ranks the faulty statement at the top of the suspiciousness ranking for seven out of 14 studied faults, and within the top three for another three faults. In addition, the newly introduced LIL metric also shows that MUSE can be highly accurate, as well as confirming the observation made by Qi et al. [23].

The contribution of this paper is as follows:
The paper presents a novel fault localization technique called MUSE: *Mutation-based Fault Localization*. It utilizes mutation analysis to significantly improve the precision of fault localization.

The paper proposes a new evaluation metric for fault localization techniques called *Locality Information Loss* (LIL) based on information theory. It is flexible enough to be applied to all types of fault localization techniques and can be easily applied to multiple faults scenarios.

The paper presents an empirical evaluation of MUSE using five non-trivial real world programs. The results show that MUSE improves upon the best known SBFL technique by 25 times on average and ranks the faulty statement within the top 3 suspicious statements for 10 out of 14 subject program versions.

This paper is organized as follows. Section II describes the mutation-based fault localization technique to precisely localize a fault. Section III explains the new evaluation metric LIL based on information theory. Section IV shows the experiment setup for the empirical evaluation of the techniques on the subject programs. Section V explains the experiment results regarding the research questions and Section VI discusses the results. Section VII presents related work and Section VIII finally concludes with future work.

## II. MUTATION-BASED FAULT LOCALIZATION

### A. Intuitions

Consider a faulty program $P$ whose execution with some test cases results in failures and we propose to mutate $P$. Let $m_f$ be a mutant of $P$ that mutates the faulty statement, and $m_c$ one that mutates a correct statement. MUSE depends on the following two conjectures.

**Conjecture 1:** test cases that used to fail on $P$ are more likely to pass on $m_f$ than on $m_c$.

The first conjecture is based on the observation that $m_f$ can only be one of the following three cases per test suite:

1. **Equivalent/dormant mutant** (i.e., mutants that syntactically change the program but not semantically), in which case the faulty statement remains faulty. Tests that failed on $P$ should still fail on $m_f$.
2. **Non-equivalent** and **faulty**: while the new fault may or may not be identical to the original fault, we expect tests that have failed on $P$ are still more likely to fail on $m_f$ than to pass.
3. **Non-equivalent** and not **faulty**: in which case the fault is fixed by the mutation (with respect to the test suite concerned).

Note that mutating the faulty statement is more likely to cause the tests that failed on $P$ to pass on $m_f$ (case 3) than on $m_c$ because a faulty program is usually fixed by modifying (i.e., mutating) a faulty statement, not a correct one. Therefore, the number of the failing test cases whose results change to pass will be larger for $m_f$ than for $m_c$.

In contrast, mutating correct statements is not likely to make more test cases pass. Rather, we expect an opposite effect, which is as follows:

**Conjecture 2:** test cases that used to pass on $P$ are more likely to fail on $m_c$ than on $m_f$.

Similarly to the case of $m_f$, the second conjecture is based on an observation that $m_c$ can be one of the following cases per test suite:

1. **Equivalent/dormant mutant**, in which case the statement remains correct. Tests that passed with $P$ should still pass with $m_c$.
2. **Non-equivalent mutant**: by definition, a non-equivalent mutation on a correct statement introduces a fault, which is the original premise of mutation testing.

This second conjecture is based on the observation that a program is more easily broken by modifying (i.e., mutating) a correct statement than by modifying a faulty statement (case 2). Therefore, the number of the passing test cases whose results change to fail will be greater for $m_c$ than $m_f$.

To summarize, mutating a faulty statement is more likely to cause more tests to pass than the average, whereas mutating a correct statement is more likely to cause more tests to fail than the average (the average case considers both correct and faulty statements). These conjectures provide the basis for our mutation-based fault localization technique.

### B. Suspiciousness Metric of MUSE

Based on the conjectures, we now define the suspiciousness metric for MUSE, $\mu$. For a statement $s$ of $P$, let $f_P(s)$ be the set of tests that covered $s$ and failed on $P$, and $p_P(s)$ be the set of tests that covered $s$ and passed on $P$. With respect to a fixed set of mutation operators, let $mut(s) = \{m_1, \ldots, m_k\}$ be the set of all mutants of $P$ that mutates $s$ with observed changes in test results (we use only non-dormant mutants since dormant mutants do not provide useful information to utilize the conjectures). After each mutation $m_i \in mut(s)$, let $f_{m_i}$ and $p_{m_i}$ be the set of failing and passing tests on $m_i$ respectively ($f_P$ and $p_P$ defined on $P$ similarly). Given a weight $\alpha$, the metric $\mu$ is defined as follows:

$$
\mu(s) = \frac{1}{|mut(s)|} \sum_{m \in mut(s)} \frac{|f_P(s) \cap p_m|}{|f_P|} - \alpha \cdot \frac{|p_P(s) \cap f_m|}{|p_P|}
$$

(1)

The first term, $\frac{|f_P(s) \cap p_m|}{|f_P|}$, reflects the first conjecture: it is the proportion of tests that failed on $P$ but now pass on a mutant $m$ that mutates $s$ over tests that failed on $P$. Similarly, the second term, $\frac{|p_P(s) \cap f_m|}{|p_P|}$, reflects the second conjecture, being the proportion of tests that passed on $P$ but now fail on a mutant $m$ that mutates $s$ over tests that passed on $P$. When averaged over $mut(s)$, they become the probability of test result change per mutant, from failing to passing and vice versa respectively.
Intuitively, the first term correlates to the probability of \( s \) being the faulty statement (it increases the suspiciousness of \( s \) if mutating \( s \) causes failing tests to pass, i.e. increase the size of \( f_P(s) \cap p_m \)), whereas the second term correlates to the probability of \( s \) not being the faulty statement (it decreases the suspiciousness of \( s \) if mutating \( s \) causes passing tests to fail, i.e. increase the size of \( p_P(s) \cap f_m \)).

Since it is more likely that a passing test case on \( P \) will fail on \( m \) than a failing test case on \( P \) will pass on \( m \) (i.e., breaking a program is easier than correcting the program), we expect the average of the second term to be different from that of the first term. In order to balance the two terms, we use the weight \( \alpha \) to adjust the average values of the two terms to be the same. Thus, when we subtract the weighted second term from the first term as in Equation 1, we get the baseline of value 0. For a faulty statement, the first term is likely to be larger and the second term is likely to be smaller than for a correct statement (we assign minimum suspiciousness to the statements that do not have a mutant).

To adjust the average of both terms, the value of \( \alpha \) should be calculated as \( \frac{\sum_{P} f_P(s) \cap p_m}{\sum_{P} p_P(s) \cap f_m} \). Variable \( f_2p \) and \( p_2f \) denote the number of test result changes from failure to pass and vice versa between before and after all mutants of \( P \), the set of which is \( mut(P) \). Note that \( \alpha \) can be calculated without a priori knowledge of the faulty statement and we can use other fault localization techniques if \( \alpha = 0 \).

**C. A Working Example**

Figure 1 presents an example of how MUSE localizes a fault. The PUT is a function called `setmax()`, which sets a global variable \( \text{max} \) (initialized to 0) with \( y \) if \( x < y \), or with \( x \) otherwise. Statement \( s_1 \) contains a fault, as it should be \( \text{max}=x \). Let us assume that we have five test cases (tc1 to tc5); the coverage of individual test cases are marked with black bullets (●). TC1 and TC2 fail because `setmax()` updates max with the smaller number, \( y \). The remaining test cases pass. Thus, \( |f_P| = 2 \) and \( |p_P| = 3 \).

First, MUSE generates mutants by mutating only one statement at a time. For the sake of simplicity, here we assume that MUSE generates only two mutants per statement, resulting in a total of 12 mutants, \{m1, ..., m12\} (listed under the “Mutants” column of Figure 1). Test cases change their results after the mutation as noted in the middle column. For example, TC1, which used to fail, now passes on the two mutants, m2 and m4.

Based on the changed results of the test cases, MUSE calculates \( \alpha \) as \( \frac{\sum_{P} f_P(s) \cap p_m}{\sum_{P} p_P(s) \cap f_m} \). Since there are three changes from failure to pass, \( f_2p = 3 \) (TC1 and TC2 on m2 and TC1 on m4) while \( p_2f = 19 \) (see the changed results of TC3, TC4, and TC5), while \( |p_P| = 3 \).

Using \( \alpha = 0.24 \), MUSE calculates the suspiciousness of \( s_1 = 0.24 = \left( \frac{2}{3} \cdot \frac{1}{2} - 0.24 \cdot 1/3 \right) + \left( 2/2 - 0.24 \cdot 3/3 \right) = 0.46 \), where \( |f_P(s_1) \cap p_{m1}| = 0 \) and \( |p_P(s_1) \cap f_{m1}| = 1 \). Similarly, p2f = 19 (see the changed results of TC3, TC4, and TC5), while \( |p_P| = 3 \).

Using \( \alpha = 0.24 \), MUSE calculates the suspiciousness of \( s_1 = 0.24 = \left( \frac{2}{3} \cdot \frac{1}{2} - 0.24 \cdot 1/3 \right) + \left( 2/2 - 0.24 \cdot 3/3 \right) = 0.46 \), where \( |f_P(s_1) \cap p_{m1}| = 0 \) and \( |p_P(s_1) \cap f_{m1}| = 1 \). Similarly, p2f = 19 (see the changed results of TC3, TC4, and TC5), while \( |p_P| = 3 \).

Using \( \alpha = 0.24 \), MUSE calculates the suspiciousness of \( s_1 = 0.24 = \left( \frac{2}{3} \cdot \frac{1}{2} - 0.24 \cdot 1/3 \right) + \left( 2/2 - 0.24 \cdot 3/3 \right) = 0.46 \), where \( |f_P(s_1) \cap p_{m1}| = 0 \) and \( |p_P(s_1) \cap f_{m1}| = 1 \). Similarly, p2f = 19 (see the changed results of TC3, TC4, and TC5), while \( |p_P| = 3 \).
D. MUSE Framework

Figure 2 shows the framework of MUtation-baSEd fault localization technique (MUSE). There are three major stages: selection of statements to mutate, testing of the mutants, and calculation of the suspiciousness scores.

Step 1: MUSE receives a target program \( P \) and a test suite \( T \). After executing \( T \) on \( P \), MUSE selects the target statements, i.e. the statements of \( P \) that are executed by at least one failing test case in \( T \). We focus on only these statements as those not covered by any failing tests, can be considered not faulty with respect to \( T \).

Step 2: MUSE generates mutant versions of \( P \) by mutating each of the statements selected at Step 1. MUSE may generate multiple mutants from a single statement since one statement may contain multiple mutation points [8]. MUSE tests all generated mutants with \( T \) and records the results.

Step 3: MUSE compares the test results of \( T \) on \( P \) with the test results of \( T \) on all mutants. This produces the weight \( \alpha \), based on which MUSE calculates the suspiciousness of the target statements of \( P \).

III. LIL: LOCALITY INFORMATION LOSS

The output of fault localization techniques can be consumed by either human developers or automated program repair techniques. Expense [13] metric measures the portion of program statements that need to be inspected by developers until the localization of the fault. It has been widely adopted as an evaluation metric for FL techniques [13, 19, 21] as well as a theoretical framework that showed hierarchies between SBFL techniques [28, 29]. However, the Expense metric has been criticised for being unrealistic to be used by a human developer directly [22].

In an attempt to evaluate the precision of SBFL techniques, Qi et al. [23] compared SBFL techniques by measuring the Number of Candidate Patches (NCP) generated by GenProg [25] automated program repair tool, with the given localization information. Automated program repair techniques tend to bypass the ranking and directly use the suspiciousness scores of each statement as the probability of mutating the statement (expecting that mutating a highly suspicious statement is more likely to result in a potential fix) [6, 25]. An interesting empirical observation by Qi et al. [23] is that Jaccard [10] produced lower NCP than Op2 [19], despite having been proven to always produce a lower ranking for the faulty statement than Op2 [28]. This is due to the actual distribution of the suspiciousness score: while Op2 produced higher ranking for the faulty statement than Jaccard, it assigned almost equally high suspiciousness scores to some correct statements. On the other hand, Jaccard assigned much lower suspiciousness scores to correct statements, despite ranking the faulty statement slightly lower than Op2.

This illustrates that evaluation and theoretical analysis based on the linear ranking model is not applicable to automated program repair techniques. LIL metric can measure the aptitude of FL techniques for automated repair techniques as it measures the effectiveness of localization in terms of information loss rather than the behavioural cost of inspecting a ranking of statements. LIL metric essentially captures the essence of the entropy-based formulation of fault localization [32] in the form of an evaluation metric.

We propose a new evaluation metric that does not suffer from this discrepancy between two consumption models. Let \( S \) be the set of \( n \) statements of the Program Under Test, \( \{s_1, \ldots, s_n\} \), \( s_f \), \( 1 \leq f \leq n \) being the single faulty statement. Without losing generality, we assume that output of any fault localization technique \( \tau \) can be normalized to \([0, 1]\). Now suppose that there exists an ideal fault localization technique, \( L \), that can always pinpoint \( s_f \) as follows:

\[
L(s_i) = \begin{cases} 
1 & (s_i = s_f) \\
\epsilon & (0 < \epsilon \ll 1, s_i \in S, s_i \neq s_f)
\end{cases}
\]

Note that we can convert outputs of FL techniques that do not use suspiciousness scores in a similar way: if a technique \( \tau \) simply reports a set \( C \) of \( m \) statements as candidate faulty statements, we can set \( \tau(s_i) = \frac{1}{m} \) when \( s_i \in C \) and \( \tau(s_i) = \epsilon \) when \( s_i \in S \setminus C \).

We now cast the fault localization problem in a probabilistic framework as in the previous work [32]. Since the suspiciousness score of a statement is supposed to correlate
to the likelihood of the statement containing the fault, we convert the suspiciousness score given by an FL technique, \( \tau : S \rightarrow [0, 1] \), into the probability of any member of \( S \) containing the fault, \( P_\tau(s) \), as follows:

\[
P_\tau(s_i) = \frac{\tau(s_i)}{\sum_{i=1}^{n} \tau(s_i)} (1 \leq i \leq n)
\]  

This converts suspiciousness scores given by any \( \tau \) (including \( L \)) into a probability distribution, \( P_\tau \). The metric we propose is the Kullback-Leibler divergence [16] of \( P_\tau \) from \( P_\ell \), denoted as \( D_{KL}(P_\ell \| P_\tau) \): it measures the information loss that happens when using \( P_\tau \) instead of \( P_\ell \) and is calculated as follows:

\[
D_{KL}(P_\ell \| P_\tau) = \sum_i \ln \left( \frac{P_\ell(s_i)}{P_\tau(s_i)} \right) P_\ell(s_i)
\]

We call this as Locality Information Loss (LIL). Kullback-Leibler divergence between two given probability distributions \( P \) and \( Q \) requires the following: both \( P \) and \( Q \) should sum to 1, and \( Q(s_i) = 0 \) implies \( P(s_i) = 0 \). We satisfy the former by the normalization in Equation 3 and the latter by always substituting 0 with \( \epsilon \) after normalizing \( \tau^2 \) (because we cannot guarantee the implication in our application). When these properties are satisfied, \( D_{KL}(P_\ell \| P_\tau) \) becomes 0 when \( P_\ell \) and \( P_\tau \) are identical. As with the Expense metric, the lower the LIL value is the more accurate the FL technique is. Based on Information Theory, LIL has the following strengths compared to the Expense metric:

- **Expressiveness:** unlike the Expense metric that only concerns the actual faulty statement, LIL also reflects how well the suspiciousness of non-faulty statements have been suppressed by an FL technique. That is, LIL can be used to explain the results of Qi et al. [23] quantitatively.
- **Flexibility:** unlike the Expense metric that only concerns a single faulty statement, LIL can handle multiple locations of faults. For \( m \) faults (or for a fault that consists of \( m \) different locations), the distribution \( P_\ell \) will simply show not one but \( m \) spikes, each with \( \frac{1}{m} \) as height.
- **Applicability:** Expense metric is tied to FL techniques that produce rankings, whereas LIL can be applied to any FL technique. If a technique assigns suspiciousness scores to statements, it can be converted into \( P_\ell \); if a technique simply presents one or more statements as candidate fault location, \( P_\tau \) can be formulated to have corresponding peaks.

IV. EXPERIMENTAL SETUP

We have designed the following three research questions to evaluate the effectiveness of MUSE in terms of the Expense metric [18] and the LIL metric (Section III):

**RQ1. Foundation:** How many test results change from failure to pass and vice versa between before and after on a mutant generated by mutating a faulty statement, compared with a mutant generated by mutating a correct one?

RQ1 is to validate the conjectures in Section II-A, on which MUSE depends. If these conjectures are valid (i.e., more failing test cases become passing after mutating the faulty statement than a correct one, and more passing test cases become failing after mutating a correct statement than the faulty one), we can expect that MUSE will localize a fault precisely.

**RQ2. Precision:** How precise is MUSE, compared with Jaccard, Ochiai, and Op2 in terms of the % of executed statements examined to localize a first fault?

Precision in terms of the % of program statements to be examined is the traditional evaluation criteria for fault localization techniques. RQ2 evaluates MUSE with the Expense metric against the three widely studied SBFL techniques – Jaccard, Ochiai, and Op2. Op2 [19] is proven to perform well in Expense metric; Ochiai [20] performs closely to Op2, while Jaccard [10] shows good performance when used with automated program repair [23].

**RQ3. Information Loss:** How precise is MUSE, compared with Jaccard, Ochiai, and Op2 in terms of the Locality Information Loss (LIL) metric?

RQ3 evaluates the precision of MUSE with the LIL metric introduced in Section III against the three SBFL techniques (Jaccard, Ochiai, and Op2). The smaller the LIL value is, the more precise the FL technique is.

To answer the research questions, we performed a series of experiments by applying Jaccard, Ochiai, Op2, and MUSE to the 14 faulty versions in five real world C programs. The following subsections describe the details of the experiments.

A. Subject Programs

For the experiments, we used five non-trivial real-world programs including flex version 2.4.7, grep version 2.2, gzip version 1.1.2, sed version 1.18, and space, all of which are from the SIR benchmark suite [4].

Table 1 describes the target programs including their sizes in Lines of Code, the faulty versions used, and the numbers of failing and passing test cases for each program version/fault pair. From the base versions listed above, we randomly selected three faulty versions from each program except grep where a failure is detected only in two faulty versions by the used test suite. grep v3 and space v19 have multiple faults and the other versions have one fault per each version. The fault ID of each version is presented in Table 1 (For the rest of the paper, we refer to
these faulty versions with the term version.\textsuperscript{3} For flex, grep, and space, we used the coverage-adequate test suite provided by the SIR benchmark (flex and grep has only one coverage adequate test suite. For space, we randomly chose one coverage adequate test suite out of 1000 coverage-adequate test suites). For gzip and sed, we use the universe test suite, because the SIR benchmark does not provide a coverage-adequate test suite for the two programs. In addition, we excluded the test cases which caused a target program version to crash (e.g., segmentation fault), since gcov that we used to measure coverage information cannot record coverage information for such test cases.

**B. Mutation and Fault Localization Setup**

We use gcov to measure the statement coverage achieved by a given test case. Based on the coverage information, MUSE generates mutants of the PUT, each of which is obtained by mutating one statement that is covered by at least one failing test case. We use the Proteum mutation tool for the C language \textsuperscript{17}, which implements the mutation operators defined by Agrawal el al. \textsuperscript{8}. To reduce the cost of the experiments, MUSE generates only one mutant for each mutation point of a target statement per mutation operator using the options provided by Proteum.\textsuperscript{4}

We implemented MUSE, as well as Jaccard, Ochiai, and Op2, in 6,400 lines of C++ code. All experiments were performed on 10 machines equipped with Intel i5 3.6Ghz CPUs and 8GB RAM running 64 bit Debian Linux 6.05.

**V. RESULT OF THE EXPERIMENTS**

**A. Result of the Mutation**

Table \textsuperscript{11} shows the number of mutants generated per subject program version. On average, MUSE generates 20693.0 (=14557.7+6135.3) mutants per version and uses 14557.7 mutants, while discarding 6135.3 dormant mutants, i.e. those for which none of the test cases change their results, on average.\textsuperscript{5} This translates into an average of 9.7 mutants per considered target statement. The mutation and the subsequent testing of all mutant versions took 5 hours using the 10 machines while each of Jaccard, Ochiai, and Op2 took several minutes on one machine. Note that the mutation task of MUSE can be highly parallelized/distributed on thousands of machines (for example, utilizing Amazon EC2 cloud computing platform) and MUSE can localize a fault in several minutes since mutating a statement of the target program version (mutation point of a target statement per mutation operator using the options provided by Proteum). The selection of a mutation point of a target statement per mutation operator using the options provided by Proteum.\textsuperscript{4}

\textsuperscript{3}MUSE does not assume that a fault lie in one statement because a partial fix of a multi-line spanning fault obtained by mutating one statement can still correct (or partially correct (i.e., make the target program pass with a subset of failing test cases)) the target program and provide important information to localize a fault.

\textsuperscript{4}For example, if\(x+2=y+1\) has one mutation point (\(>\)) for ORRN (mutation operator on relational operator) and two points (2 and 1) for CCCR (mutation operator for constant to constant replacement) \textsuperscript{8}. MUSE generates only one mutant like if\(x+2<y+1\) using ORRN and only if\(x+0>y+0\) and if\(x+2>y+0\) using CCCR. The selection of a mutant to generate using a mutation operator depends on the Proteum implementation.

\textsuperscript{5}sed v5 has no dormant mutant because the fault of sed v5 is non-deterministic one (i.e., it dynamically allocates a smaller amount of memory than necessary through \textit{malloc()}).

### Table I: Subject programs, their sizes in lines of code (LOC), and the number of failing and passing test cases

| Subjects | Ver. | Fault | Size | \(|f_r|\) | \(|p_r|\) | Description |
|----------|------|-------|------|--------|--------|-------------|
| flex     | v1   | F_HD_1 | 12,423 | 2 | 40 | Lexical Analyzer Generator |
|          | v7   | F_HD_7 | 12,423 | 1 | 41 |edor |
|          | v11  | F_AA_3 | 12,423 | 20 | 22 | |
| grep     | v3   | F DG_4 | 12,653 | 5 | 175 | Pattern Matcher |
|          | v11  | F KG_2 | 12,653 | 177 | 22 | |
| gzip     | v2   | F KL_2 | 6,576  | 1 | 211 | Compression Utility |
|          | v7   | F KG_1 | 6,576  | 17 | 196 | |
|          | v13  | F KG_9 | 6,576  | 3 | 210 | |
| sed      | v1   | F AG_2 | 11,990 | 42 | 316 | Stream Editor |
|          | v3   | F AG_17 | 11,990 | 1 | 357 | |
|          | v5   | F AG_20 | 11,990 | 64 | 81 | |
| space    | v19  | N/A    | 9,129 | 8 | 145 | ADL Interpreter |
|          | v21  | N/A    | 9,126 | 1 | 152 | |
|          | v28  | N/A    | 9,126 | 46 | 107 | |

### Table II: The number of target statements, used mutants, and dormant mutants (those that do not change any test results) per subject

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Target Stmt.</th>
<th>Used Mutants</th>
<th>Dormant Mutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>flex</td>
<td>2,243</td>
<td>29,030</td>
<td>7,375</td>
</tr>
<tr>
<td>flex</td>
<td>2,209</td>
<td>28,575</td>
<td>7,411</td>
</tr>
<tr>
<td>flex</td>
<td>2,473</td>
<td>30,366</td>
<td>8,532</td>
</tr>
<tr>
<td>grep</td>
<td>1,364</td>
<td>18,127</td>
<td>10,201</td>
</tr>
<tr>
<td>grep</td>
<td>1,652</td>
<td>12,029</td>
<td>26,425</td>
</tr>
<tr>
<td>gzip</td>
<td>129</td>
<td>1,172</td>
<td>835</td>
</tr>
<tr>
<td>gzip</td>
<td>263</td>
<td>2,054</td>
<td>1,896</td>
</tr>
<tr>
<td>gzip</td>
<td>143</td>
<td>1,238</td>
<td>887</td>
</tr>
<tr>
<td>sed</td>
<td>1,694</td>
<td>13,215</td>
<td>4,813</td>
</tr>
<tr>
<td>sed</td>
<td>887</td>
<td>6,307</td>
<td>2,367</td>
</tr>
<tr>
<td>sed</td>
<td>1,958</td>
<td>23,552</td>
<td>0</td>
</tr>
<tr>
<td>space</td>
<td>2,124</td>
<td>14,489</td>
<td>4,919</td>
</tr>
<tr>
<td>space</td>
<td>1,509</td>
<td>9,708</td>
<td>2,790</td>
</tr>
<tr>
<td>space</td>
<td>2,405</td>
<td>13,946</td>
<td>7,443</td>
</tr>
</tbody>
</table>

Average: 1503.8 | 14557.7 | 6135.3
Table IV: Precision of Jaccard, Ochiai, Op2, and MUtation-baSEd fault localization technique (MUSE)

<table>
<thead>
<tr>
<th>Program</th>
<th>% of executed stmts examined</th>
<th>Rank of a faulty stmt</th>
<th>Locality Information Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jaccard</td>
<td>Ochiai</td>
<td>Op2</td>
</tr>
<tr>
<td>flex v1</td>
<td>49.48</td>
<td>45.04</td>
<td>32.01</td>
</tr>
<tr>
<td>flex v7</td>
<td>3.60</td>
<td>3.60</td>
<td>3.60</td>
</tr>
<tr>
<td>flex v11</td>
<td>19.76</td>
<td>19.54</td>
<td>13.51</td>
</tr>
<tr>
<td>grep v3</td>
<td>1.06</td>
<td>1.01</td>
<td>0.71</td>
</tr>
<tr>
<td>grep v11</td>
<td>3.44</td>
<td>3.44</td>
<td>3.44</td>
</tr>
<tr>
<td>gzip v2</td>
<td>2.14</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>gzip v5</td>
<td>1.83</td>
<td>1.83</td>
<td>1.83</td>
</tr>
<tr>
<td>gzip v13</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>sed v1</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>sed v3</td>
<td>2.56</td>
<td>2.56</td>
<td>2.56</td>
</tr>
<tr>
<td>sed v5</td>
<td>37.84</td>
<td>37.84</td>
<td>37.15</td>
</tr>
<tr>
<td>space v19</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>space v21</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>space v28</td>
<td>11.57</td>
<td>10.66</td>
<td>6.89</td>
</tr>
</tbody>
</table>

Average | 9.67 | 9.27 | 7.56 | 0.38 | 242.64 | 231.50 | 184.64 | 7.43 | 5.72 | 6.03 | 6.58 | 2.87 |

Table III: The average numbers of the test cases whose results change on the mutants

<table>
<thead>
<tr>
<th>Subject programs</th>
<th># of Failing Tests that Pass after Mutating</th>
<th># of passing tests that fail after mutating</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>flex v1</td>
<td>0.0027</td>
<td>15.7270</td>
<td>1</td>
</tr>
<tr>
<td>flex v3</td>
<td>0.0026</td>
<td>5.3874</td>
<td>1</td>
</tr>
<tr>
<td>grep v3</td>
<td>0.1299</td>
<td>17.9470</td>
<td>1</td>
</tr>
<tr>
<td>gzip v2</td>
<td>0.0095</td>
<td>109.2140</td>
<td>1</td>
</tr>
<tr>
<td>gzip v5</td>
<td>0.0611</td>
<td>89.8181</td>
<td>1</td>
</tr>
<tr>
<td>gzip v13</td>
<td>0.0000</td>
<td>113.9410</td>
<td>1</td>
</tr>
<tr>
<td>sed v1</td>
<td>0.0095</td>
<td>113.1440</td>
<td>1</td>
</tr>
<tr>
<td>sed v3</td>
<td>0.0000</td>
<td>109.7895</td>
<td>1</td>
</tr>
<tr>
<td>sed v5</td>
<td>0.0000</td>
<td>109.7895</td>
<td>1</td>
</tr>
<tr>
<td>space v19</td>
<td>0.0000</td>
<td>109.7895</td>
<td>1</td>
</tr>
<tr>
<td>space v21</td>
<td>0.0000</td>
<td>109.7895</td>
<td>1</td>
</tr>
<tr>
<td>space v28</td>
<td>0.0000</td>
<td>109.7895</td>
<td>1</td>
</tr>
</tbody>
</table>

Average | 0.6835 | 12.9271 | 1435.9 | 706.060 | 12.2793 | 73.4 | 0.4332 |

0.0611 and 15.1111 failing test cases on gzip v5 pass on m_c and m_f respectively.

Table III provides evidence for the conjectures of MUSE. The number of the failing test cases on P that pass on m_f is 1435.9 times greater than the number on m_c on average, which supports the first conjecture. Similarly, the number of the passing test cases on P that fail on m_c is 73.4 times greater than the number on m_f on average, which supports the second conjecture. Based on the results, we claim that both conjectures are true.

C. Regarding RQ2: Precision of MUSE in terms of the % of executed statements examined to localize a fault

Table IV presents the precision evaluation of Jaccard, Ochiai, Op2, and MUSE with the proportion of executed statements required to be examined before localizing the fault (i.e. the Expense metric). The most precise results are marked in bold. Following the ranking produced by MUSE, one can localize a fault after examining 0.38% of the executed statements on average. The average precision of MUSE is 25.68 (=9.67/0.38), 24.61 (=9.27/0.38), and 20.09 (=7.56/0.38) times higher than that of Jaccard, Ochiai, and Op2, respectively. In addition, MUSE produces the most precise results for 11 out of the 14 studied faulty versions. This provides quantitative answer to RQ2: MUSE can outperform the state-of-the-art SBFL techniques over the Expense metric.

In response to Parnin and Orso [22], we also report the absolute rankings produced by MUSE, i.e. the actual number of statements that need to be inspected before encountering the faulty statement. MUSE ranks the faulty statements of the seven faulty versions (flex v1, v11, gzip v2, v5, v13, and space v21, v28) at the top and ranks the faulty statement of another three versions (flex v7, sed v3, and space v19) among the top three. On average, MUSE ranks the faulty statement among the top 7.43 places, which is 24.86 (=184.64/7.43) times more precise than the best performing SBFL technique, Op2. We believe MUSE is precise enough that its results can be used by a human developer in practice.

D. Regarding RQ3: Precision of MUSE in terms of the Locality Information Loss

The Locality Information Loss column of Table IV shows the precision of Jaccard, Ochiai, Op2, and MUSE in terms of the LIL metric, calculated with \( \epsilon = 10^{-17} \). The best results (i.e. the lowest values) are marked in bold. The LIL metric value of MUSE is 2.87 on average, which is 1.99 (=5.72/2.87), 2.10 (=6.03/2.87), and 2.29 (=6.58/2.87) times more precise than those of Jaccard, Ochiai, and Op2. In addition, the LIL metric values of MUSE are the smallest ones on the eleven out of the 14 subject program versions.
This answers **RQ3**: MUSE can outperform the state-of-the-art SBFL techniques over the LIL metric.

One interesting observation is that MUSE produces Expense and LIL values that correlate relatively well. The versions whose absolute ranking of faulty statement is equal to or less than 3, and whose LIL metric is less than or equal to 2.66, are the following 10 versions: flex v1,v7,v11, gzip v2,v5,v13, sed v3, and space v19,v21,v28. For another three versions (grep v3,v11 and sed v3), both the Expense and LIL metric values perform worse than the other techniques, although not significantly.

In contrast, Expense and LIL metric often do not agree with each other for the SBFL techniques. Consider space v21: Jaccard, Ochiai, and Op2 produces the same Expense value of 0.45%. However, their LIL values are all different (Jaccard: 4.92 < Ochiai: 5.96 < Op2: 7.34). A similar pattern is observed in other subject versions (flex v7, grep v11, gzip v2,v5,v13, sed v1,v3, space v19,v21).

Figure 3 illustrates this phenomenon in more detail. It plots the normalized suspiciousness scores for each executed statement of space v21 in a descending order. The circles indicate the location of the faulty statement. While all techniques assign, to the faulty statement, suspiciousness values that rank near the top, it is the suspiciousness of correct statements that differentiates the techniques. When normalized into [0,1], MUSE assigns values less than 0.00024 to all correct statements while the SBFL techniques assign values much higher than 0 (e.g., 4.8% of the executed statements are assigned suspiciousness higher than 0.9 by Op2, while 37.2% are assigned values higher than 0.5). Figure 4 presents the distribution of suspiciousness in space v21 for individual techniques to make it easier to observe the differences. This provides supporting evidence to answer **RQ3**: MUSE does perform better than the state-of-the-art SBFL techniques when evaluated using the LIL metric. Figure 4 also intuitively illustrates the strength of the LIL metric over the Expense metric.

This independently confirms the results obtained by Qi et al. [23]. Our new evaluation metric, LIL, confirms the same observation as Qi et al. by assigning Jaccard a lower LIL value of 5.72 than that of Op2, 6.58 (see Section III for more details).

**VI. DISCUSSIONS**

A. Why does it work well?

As shown in Section V-C and Section V-D, MUSE demonstrates superior precision when compared to the state-of-the-art SBFL techniques. In addition to the finer granularity of statement level, the improvement is also partly because MUSE directly evaluates where (partial) fix can (and cannot) potentially exist instead of predicting the suspiciousness through program spectrum. In a few cases, MUSE actually finds a fix, in a sense that it performs a program mutation that will make all test cases pass (this, in turn, increases the first term in the metric, raising the rank of the location of the mutation). However, in other cases, MUSE finds a partial fix, i.e., a mutation that will make only some of previously failing test cases pass. While not as strong as the former case, a partial fix nonetheless captures the chain of control and data dependencies that are relevant to the failure and provides a guidance towards the location of the fault.

B. MUSE and Test Suite Balance

One advantage MUSE has over SBFL is that MUSE is relatively freer from the proportion of passing and failing test cases in a test suite. In contrast, SBFL techniques benefit from having a balanced test suite, and have been augmented by automated test data generation work [5,12,15].

MUSE does not require the test suite to have many passing test cases. To illustrate the point, we purposefully calculated MUSE metric without any test cases that passed before mutation (this effectively means that we only use the first term of the metric). On average, MUSE ranked the faulty statement within the top 5.09%, which outperforms SBFL techniques that considered all passing and failing test cases: MUSE is still 1.90 (=9.67/5.09), 1.82 (=9.27/5.09) and 1.49(=7.56/5.09) times more precise than Jaccard, Ochiai, and Op2 respectively.

Interestingly, MUSE does not require the test suite to have many failing test cases. Considering that previous work [12,15] focused on producing more failing test cases to improve the precision, this is an important observation. We purposefully calculated MUSE metric without any test cases that failed before mutation: although this translates into an unlikely use case scenario, it allows us to measure the differentiating power of the second conjecture in isolation. When only the second term of the MUSE metric is calculated (with $\alpha=1$), MUSE could still rank the faulty statement

\footnote{The normalized suspiciousness of a statement $s$ in an FL technique $r$, norm\_susp$_r$(s) is computed as $(susp_r(s) - min(r))/(max(r) - min(r))$ where min$(r)$ and max$(r)$ is the minimum and maximum observed suspiciousness for all statements [23].}
among the top 14.62% on average, and among the top 2% for seven out of 14 faulty versions we studied. Intuitively, SBFL techniques require many failing executions to identify where a fault is, whereas MUSE is relatively free from this constraint because it also identifies where a fault is not.

This advantage is due to the fact that MUSE utilizes two separate conjectures, each of which is based on the number of failing and passing test cases respectively. Thus, even if a test suite has almost no failing or passing test cases, MUSE can localize a fault precisely.

C. LIL Metric and Automated Bug Repair

LIL metric is better at predicting the performance of an FL technique for automated program repair tools than the traditional ranking model. The fact that the ranking model is not suitable has been demonstrated by Qi et al. [23]. We performed a small case study with the GenProg-FL tool by Qi et al., which is a modification of the original GenProg tool. We applied Jaccard, Ochiai, Op2, and MUSE, to GenProg-FL in order to fix look utx 4.3, which is one of the subject programs recently used by Le Goues et al. [2]. GenProg-FL [23] measures the NCP (Number of Candidate Patches generated before a valid patch is found in the repair process) of each FL technique where the suspiciousness score of a statement $s$ is used as the probability to mutate $s$.

Table V shows the Expense, the LIL and the NCP scores on look utx 4.3 by MUSE, Op2, Ochiai, and Jaccard. For the case study, we generated 30 failing and 150 passing test cases randomly and used the same experiment parameters as in GenProg-FL [23] (we obtained the average NCP score from 100 runs). Table V demonstrates that the LIL metric is useful to evaluate the effectiveness of an FL technique for the automatic repair of look utx 4.3 by GenProg-FL: the LIL scores (MUSE : 3.52 < Op2 : 3.77 < Ochiai : 3.83 < Jaccard : 3.89) and the NCP scores (MUSE : 25.3 < Op2 : 31.0 < Ochiai : 32.2 < Jaccard : 35.5) are in agreement.

A small LIL score of a localization technique indicates that the technique can be used to perform more efficient automated program repair. In contrast, the Expense metric values did not provide any information for the three SBFL techniques. We plan to perform a further empirical study to support the claim.

VII. RELATED WORK

The idea of generating diverse program behaviours to localize a fault more effectively has been utilized by several studies. For example, Cleve and Zeller [9] search for program states that cause the execution to fail by replacing states of a neighbouring passing execution with those of a failing one. If a passing execution with the replaced states no longer passes, relevant statements of the states are suspected to contain faults. Zhang et al. [34], on the other hand, change branch predicate outcomes of a failing execution at runtime to find suspicious branch predicates. A branch predicate is considered suspicious if the changed branch outcome makes a failing execution pass. Similarily, Jeffrey et al. [11] change the value of a variable in a failing execution with the values with other executions; Chandra et al. [2] simulate possible value changes of a variable in a failing execution through symbolic execution. Those techniques are similar to MUSE in a sense that generating diverse program behaviours to localize faults. However, they either partially depend on the conjectures of MUSE (some [2] [11] [34] in particular depend on the first conjecture of MUSE) or rely on a different conjecture [9]. Moreover, MUSE does not require any other infrastructure than a mutation tool, because it directly changes program source code to utilize the conjectures (Section VII-B).

Since mutation operators vary significantly in their nature, mutation-based approaches such as MUSE may not yield itself to theoretical analysis as naturally as the spectrum-based ones, for which hierarchy and equivalence relations have been shown with proofs [28]. In the empirical evaluation, however, MUSE outperformed Op2 SBFL metric [19], which is known to be the best SBFL technique.

Yoo showed that risk evaluation formulas for SBFL can be automatically evolved using Genetic Programming (GP) [31]. Some of the evolved formulas were proven to be equivalent to the known best metric, Op2 [29]. While MUSE has been manually designed following human intuition, they can be evolved by GP in a similar fashion.
Papadakis and Le-Traon have used mutation analysis for fault localization [21]. However, instead of measuring the impact of mutation on partial correctness as in MUSE (i.e. the conjecture 1), Papadakis and Le-Traon depend on the similarity between mutants in an attempt to detect unknown faults: variations of existing risk evaluation formulas were used to identify suspicious mutants. Zhang et al. [33], on the other hand, use mutation analysis to identify a fault-inducing commit from a series of developer commits to a source code repository: their intuition is that a mutation at the same location as the faulty commit is likely to result in similar behaviours and results in test cases. Although MUSE shares a similar intuition, we do not rely on tests to exhibit similar behaviour: rather, both of MUSE metrics measure what is the differences introduced by the mutation. Given the disruptive nature of the program mutation, we believe MUSE is more robust.

VIII. CONCLUSION AND FUTURE WORK

Based on the conjectures we introduced, MUSE increases the suspiciousness of potentially faulty statements and decreases the suspiciousness of potentially correct statements. The results of empirical evaluation show that MUSE can not only significantly outperform the state-of-the-art SBFL techniques, but also provide a practical fault localization solution. The paper also presents Locality Information Loss, a novel evaluation metric for FL techniques based on information theory. A case study shows that it can be better at predicting the performance of an FL technique for automated program repair. Future work includes in-depth study of different mutation operators. We also plan to apply MUSE to larger subjects such as PHP with multiple test suites. In addition, we will apply the mutation idea to concolic unit testing [30] and concurrent coverage-based testing [24].

ACKNOWLEDGEMENTS

This research was supported by the NRF Mid-career Research Program funded by the MSIP Korea (2012R1A2A2A01046172), the ERC of Excellence Program MSIP/NRF of Korea (Grant NRF-2008-0062609), the MSIP under the ITRC support program (NIPA-2013-H0301-13-5004), and the EPSRC, UK (grant number EP/I010165/1). Also, we thank Shin Hong for valuable discussion on MUSE.

REFERENCES