
GPGPGPU: Evaluation of Parallelisation of
Genetic Programming using GPGPU

Jinhan Kim, Junhwi Kim, Shin Yoo

Korea Advanced Institute of Science and Technology
Republic of Korea

Abstract. We evaluate different approaches towards parallelisation of
Genetic Programming (GP) using General Purpose Computing on Graph-
ics Processor Units (GPGPU). Unlike Genetic Algorithms, which uses a
single or a fixed number of fitness functions, GP has to evaluate a diverse
population of programs. Since GPGPU is based on the Single Instruction
Multiple Data (SIMD) architecture, parallelisation of GP using GPGPU
allows multiple approaches. We study three different parallelisation ap-
proaches: kernel per individual, kernel per generation, and kernel inter-
preter. The results of the empirical study using a widely studied symbolic
regression benchmark show that no single approach is the best: the deci-
sion about parallelisation approach has to consider the trade-off between
the compilation and the execution overhead of GPU kernels.

1 Introduction

Genetic Programming has been widely adopted by the Search Based Software
Engineering community: its application ranges from fault localisation [7,12,14],
Genetic Improvement [5, 9], and program repair [3, 8]. Improving its efficiency
and scalability would have a far reaching impact across the application domains.

Parallelisation is one of the most promising technique for scalability. Pop-
ulation based evolutionary computation has been described as ‘embarrassingly
parallel’, because the fitness evaluation of each individual solution in the pop-
ulation is often completely independent from each other and, consequently, can
be performed in parallel. This is particularly the case with Genetic Algorithms
(GAs): GAs need to apply the same fitness function(s) to the entire population,
which essentially consists of input data to the fitness function(s).

General Purpose Computing on Graphics Processor Units (GPGPU) exploits
the Single Instruction Multiple Data (SIMD) architecture of graphics shaders
to parallelise computation [4]. The SIMD architecture fits the parallel fitness
evaluation of GAs naturally, and has provided significant speed-ups for search-
based test suite minimisation [13].

Genetic Programming (GP), on the other hand, keeps a population of pro-
grams. Parallelisation at the GP population level is not possible, as it would not
fit the SIMD architecture. Instead, GP can be parallelised at the training data
level. Usually, a single candidate GP solution has to be evaluated against many
data points in the training set, which can be done in parallel.



However, this GPGPU based fitness evaluation for GP requires the conversion
of GP trees into GPGPU executable kernels. The conversion involves the kernel
compilation, which is a time consuming process that is external to the GP. The
cost of kernel compilation raises the issue of cost-benefit trade-off for GPGPU.

This paper evaluates different methods of amortising the cost of kernel com-
pilation using CUDA1 toolkit. Kernel per individual method converts each indi-
vidual GP tree into a separate CUDA kernel. Kernel per generation aggregates
all individuals in the population and performs a single compilation of all indi-
viduals. Finally, kernel interpreter method uses an expression interpreter: after
a single compilation of the interpreter, GP can evaluate whatever GP tree with-
out any further compilation. We use the CPU based GP as the baseline, and the
Dow chemical data symbolic regression as the benchmark problem [10].

2 Evaluating GP Trees Using GPGPU

To achieve data level parallelisation using GPGPU, the kernel should be gener-
ated dynamically. Here, we introduce three different approaches.

– Kernel per Individual: The most intuitive approach to convert GP trees
into CUDA kernel is to generate a single CUDA kernel for each candidate
solution. Since the only difference between candidates is the expression they
represent, kernel source code can be generated using templates: we only need
to convert GP trees into infix expressions that conform to CUDA kernel
syntax. While intuitive, a drawback of this approach is that we have to
invoke CUDA compilers for each individual. If the population size is large,
this may cause a significant overhead.

– Kernel per Generation: To reduce the kernel compilation overhead, we
can generate one kernel source code file per generation: the single file will
contain multiple kernels, each corresponding to the individual solutions in
the GP population. While this results in much longer kernel source code files
(and hence increased compilation time), we expect to save the overhead of
invoking CUDA compilers multiple times.

– Kernel Interpreter: One technique that has been studied in the GP litera-
ture [1,11] is to use a single kernel that can interpret GP candidate solutions.
Using an interpreter, the GP population is transferred to the GPU as data,
which are then interpreted and evaluated against the data points in the
training data. The kernel interpreter method requires only one compilation
throughout the entire GP run. While this significantly reduces the kernel
compilation time, it increases the complexity of the CUDA kernel, which in
turn affects the performance of GPGPU. We implemented an RPN(Reverse
Polish Notation) based CUDA interpreter kernel for this study.

1 Compute Unified Device Architecture from NVIDIA



3 Experimental Setup

3.1 Research Questions

Two major drivers of the computational load of GP fitness evaluation are the
population size and the training dataset size. Both directly affects the number
of fitness evaluations that have to be performed. We formulate our Research
Questions around these two factors as follows:

– RQ1. Which approach performs best against different training dataset sizes?
– RQ2. Which approach performs best against different population sizes?

Our study uses the Dow Chemical symbolic regression benchmark [10] to
investigate the performance of different parallelisation approaches: it contains a
training dataset with 747 data points consisting of 57 independent variables and
1 dependent variable. We answer RQ1 by artificially controlling the size of the
training dataset and comparing the efficiency of different GPGPU approaches as
well as the CPU baseline. Since the aim of our study is not to improve the accu-
racy of the evolved expression, we simply repeat each data point in the training
dataset 100, 101, 102, 103, and 104 times to generate datasets with different sizes.
We answer RQ2 by running GP with population size of 50, 100, and 200, and
comparing the results. Every experiment is conducted 30 times.

3.2 Configurations & Environments

We use DEAP2 to implement different approaches: we use the 57 independent
variables in the Dow Chemical problem set as GP terminal nodes, and include
addition, subtraction, multiplication, division, and negation. The GP uses a
three-way tournament selection, a single point crossover with the rate of 0.6,
and uniform mutation with the rate of 0.01. The tree depth is set to 4. We set
the termination criterion as reaching 10 generations.

The experiments were conducted with an Intel i7-6700 CPU machine with
32 GB of RAM, running Ubuntu 14.04.5 LTS. The GPGPU has been performed
on an NVIDIA TITAN X with 12 GB of GDDR5X using CUDA version 8.0.
DEAP has been executed using Python 3.4.

4 Results

Figure 1 shows the execution time of GP using three parallelisation approaches
as well as CPU, against five different training dataset sizes and the population
size of 50. The lines connecting boxplots are merely visual aids for identifying
the same approach: they connect the mean value of each boxplot. As the training
data size increases, the efficiency of CPU based GP and kernel interpreter de-
teriorate sharply, whereas both kernel per individual and kernel per generation

2 https://github.com/DEAP/deap
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Figure 1: Plot of three parallelisation approaches and CPU based GP on the
fixed population size 50. The y-axis is shown on logarithmic scale.

approach show relatively stable performance. However, up to the dataset size of
74,700, the interpreter approach shows the best performance.

The performance deterioration of the interpreter approach is due to the over-
head of RPN-based expression evaluation. When the size of the training dataset
is relatively small, the savings in kernel compilation time compensate for this
overhead. With larger dataset (i.e. more kernel execution), the interpreter over-
head cancels out the savings in compilation time.

The interpreter overhead is mainly due to two factors. First, the interpreter
uses CUDA registers to maintain a stack, increasing the I/O overhead compared
to kernels that hardcode the expression (kernels per individual and kernel per
generation). If the stack becomes too large to be contained within registers,
we may have to rely on even slower memory, increasing the I/O overhead even
further. Second, the interpreter makes more function calls internally, compared to
the hardcoded kernels: the increased branching also deteriorates the performance
of the kernel interpreter.

To answer RQ1: the best parallelisation approach is determined by the trade-
off between compilation time and the computational overhead of the kernel in-
terpreter. Above a certain number of kernel executions, the interpreter loses the
savings from the fewer compilations.

To answer RQ2, we fixed the size of dataset and varied the population size.
The results in Figure 2a show that, for the data size of 74,700, the interpreter
method outperforms all other approaches, regardless of the population size (i.e.
its performance overhead is still being cancelled out by the savings in the compi-
lation time). Note that the kernel per individual approach performs worse than
the CPU. However, in Figure 2b, kernel per generation performs the best. In fact,
the relative order between approaches is the same as in Figure 1 with dataset
size of 747,000, regardless of the population size.

We note that the kernel per individual approach shows wider variances as the
population size grows. Since the approach relies heavily on an external process
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(a) Fixed data size 74,700
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(b) Fixed data size 747,000

Figure 2: Plot of three parallelisation approaches and CPU based GP on the
fixed data size 74,700 and 747,000. Both y-axes are shown on logarithmic scale.

(i.e. CUDA compiler), we posit that it is more vulnerable to the external and
environmental factors that can affect the execution time stochastically.

5 Related Works

The use of an interpreter has been suggested as a way to scale up GP on GPUs:
Langdon and Banzhaf implemented an RPN-based interpreter for GP regres-
sion [1]. Wilson and Banzhaf implemented an entire Linear GP system on GPUs,
parallelising not only the fitness evaluation but also the GP mutation [11]. Both
approaches have been developed with earlier incarnations of GPGPU frameworks
and do not benefit from the high level programming support of contemporary
frameworks. Our work exploits the modern GPU development framework to
compare approaches such as kernel per individual.

Other applications of GP in SBSE involves evolving not just expressions
but arbitrary code [2, 3, 9]. To parallelise GP for these applications, we need to
be able to execute arbitrary code on GPU. The existence of I/O operations or
system calls prevents such use of GPGPU. However, there are ongoing works
that attempt to overcome the limitations of GPU environment. For example,
Silberstein et al. have tried to interface the host file system with GPU kernels [6].

6 Conclusion

This paper evaluates three different parallelisation approaches for GP fitness
evaluation on GPU: kernel per individual, kernel per generation, and kernel
interpreter. The empirical study using a symbolic regression benchmark problem
shows that, while the kernel per generation performs best overall, the actual
performance depends on multiple factors such as the size of the population and
the volume of the training data. Consequently, we advise GP practitioners to
choose their parallelisation approach carefully. Future work will investigate a
wider range of benchmark problems.
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