
Faster Fault Finding at Google
Using Multi Objective Regression Test Optimisation

Shin Yoo
University College London

Gower Street, London
WC1E 6BT, UK

s.yoo@cs.ucl.ac.uk

Robert Nilsson
Google Zürich

Brandschenkestrasse 110
CH-8002 Zürich, Switzerland

robni@google.com

Mark Harman
University College London

Gower Street, London
WC1E 6BT, UK

m.harman@cs.ucl.ac.uk

ABSTRACT
Companies such as Google tend to develop products from
one continually evolving core of code. Software is neither
shipped, nor released in the traditional sense. It is sim-
ply made available, with dramatically compressed release
cycles regression testing. This large scale rapid release envi-
ronment creates challenges for the application of regression
test optimisation techniques. This paper reports initial re-
sults from a partnership between Google and the CREST
centre at UCL aimed at transferring techniques from the
regression test optimisation literature into industrial prac-
tice. The results illustrate the industrial potential for these
techniques: regression test time can be reduced by between
33%–82%, while retaining fault detection capability. Our ex-
perience also highlights the importance of a multi objective
approach: optimising for coverage and time alone is insuffi-
cient; we have, at least, to additionally prioritise historical
fault revelation.

1. INTRODUCTION
Regression testing is performed to gain confidence that

the recent modifications made to software system do not in-
terfere with the existing functionalities [10]. Regression test
suites tend to grow as the system evolves. Regression testing
typically seeks to reduce cost either by selection, minimisa-
tion or prioritisation. Selection precisely selects only those
tests that are relevant to the most recent changes [1,7]. Min-
imisation eliminates those tests that do not contribute to the
chosen test criterion [4, 5]. Prioritisation assigns a priority
ordering so that the more effective tests can be executed
earlier [8, 11].

With good test practice, test suites quickly grow, mak-
ing timely re-execution of all tests infeasible. This prob-
lem establishes a natural and pressing opportunity for some
for of test suite optimisation. However, industrial uptake
has, hitherto, been rather slow: a recent survey of the field
shows that only 8% of the published work evaluates proposed
techniques with industrial-scale subjects [10], indicating that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE 2011 Szeged, Hungary
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

further technology transfer work is required. This paper re-
ports our experience in seeking to achieve this technology
transfer through the integration of search-based regression
testing techniques within Google’s test process.

Google’s approach to managing the scale of regression
testing uses massive parallelism to farm out tests. When a
new change is submitted, all tests that could be transitively
affected by the change are retested over a period of time
governed by a test scheduler. This means that all regression
testing will be completed, but the amount of time between
submission of a change and a report back on the completion
of testing can be considerable, despite parallelism. Google’s
parallel retesting approach is essential for scalability, not
merely because of the size of the test suites, but because
of exceptionally high change frequency: Copeland recently
reported more than 20 code changes every minute [2].

Regression test optimization can help in this situation
because it can be used to identify a set of test cases that
could be run locally on the developers’ machines before the
change is submitted to the code base, with it asynchronous
massively parallel regression test infrastructure. To solve
this problem we find ourselves in a relatively familiar, well-
studied, territory for regression testing research: find a sub-
set of test suites that can achieve early fault revelation with
limited resources. This is a compromise scenario for which
multi objective regression test optimisation is well-suited [3].

Therefore, we adopted a multi objective search-based test
suite selection technique, based on previous work [9], adapt-
ing to operate within Google’s test environment. Our ap-
proach seeks to find a suitable pre-submit test suite that
can be run locally with a reasonably high probability of
early fault revelation. Though all changes that pass the
pre-submit test will be fully tested using the post-submit
build system, the pre-submit phase obviates the need for a
post-submit phase if it detects a fault.

Our search based optimisation seeks test suites that max-
imise coverage and historical fault revelation, while minimis-
ing execution time. In the literature, selection based on
coverage has also been referred to as test suite ‘minimisa-
tion’, but it is important to recognise that our overall ap-
proach throws nothing away; ultimately it re-tests all test
cases using the massively parallel post-submit test manage-
ment system. However, the optimised subset is prioritised
for early execution (and is run pre-submit). Thus, in order
to adapt the regression test optimisation techniques in the
literature to Google’s regression test environment, our ap-
proach combines elements of ‘traditional’ test suite selection,
minimisation and prioritisation.

2. MOTIVATION
In a development environment where changes are frequent

and source code is submitted to a shared code repository,
faults that are introduced in one sub-system can be propa-
gated rapidly to dependent sub-systems. This causes severe
integration problems and lost productivity.

To avoid inadvertent propagation of unexpected faults
from a newly submitted component to its dependant com-
ponents, Google uses a rigorous continuous build and in-
tegration system that regression tests every code submis-
sion to the shared repository. The set of tests that are run
post-submission is currently chosen conservatively using a
build dependency graph to compute all automated regres-
sion tests that could possibly be affected by a given change.
This will include some tests that are only incidentally re-
lated to the changed component. The order of execution is
comparatively unimportant in this context, since all depen-
dent tests eventually will be executed, and furthermore, the
post-submit tests are executed asynchronously to the devel-
opment process. A valuable benefit of being conservative
and complete is that it is easy to track down exactly what
change resulted in a regression fault and test failures are
unlikely to be missed simply because (possibly transitive)
dependencies are missed.

However, when a fault is detected post-submit, manual
intervention is required to resolve the issue in the most ap-
propriate way. A fault submitted to the shared repository
influences the productivity of other teams because, for ex-
ample, detection of new faults can be masked by the one
previously known. Hence, there is a strong desire to detect
potential faults pre-submit, reserving the post-submit build
system as last line of detection and a debugging aid.

3. PROBLEM FORMULATION
We define dependency coverage using a module depen-

dency graph. Figure 1 shows a partial module dependency
sub-graph. Google’s code repository treats both functional
modules and tests in the same manner and the module de-
pendency information is available not only between func-
tional modules (use dependency) but also between tests and
the modules they test (test dependency). Based on depen-
dency coverage, a test t covers a module m if t is transitively
dependent on m. LetM be the set of modules that depend
on the recently modified module (i.e. the code submission
under test). Let T = {t1 . . . , tn} be the full test suite, from
which an optimised subset T is produced. The dependency
coverage δcov is calculated as follows:

δcov(T) =
|{mi ∈M : ∃tj ∈ T s.t. mi is reached from tj}|

|M|
We use multi-objective optimisation to observe the trade-

off between multiple test criteria and testing cost, adapted
from our previous work [9]. We optimise the following three
objectives in our selection of a test subset T ⊆ T :
Dependency Coverage: we seek to maximise the depen-
dency coverage achieved by T . This prioritises the selection
of tests that execute the code transitively affected by the
change, helping to promote detection of integration faults.
Fault History: we seek to maximise the ratio of tests in
T that have failed within a fixed time window. This pri-
oritises the selection of tests with previously demonstrated
high fault detection capabilities. While there is no guarantee

m1

m2
m5

m4

t3

t1

t4 t2

m3

m6

m7

Test Dependency

Use Dependency

Figure 1: Illustration of Dependency Coverage: if
module m1 is modified, the impacted modules are
m2,m3,m4 and m5. Based on dependency coverage,
test t1 covers m1 and m2; t3 covers m1,m2 and m5.

that these will be good at finding new faults, our empirical
studies indicate that they are in practice (see Section 4).
Execution Time: we seek to minimise the sum of execu-
tion time required by the tests in T .
Failing Tests: For web-enabled software products, tests
may fail even though there is no fault causing the failure
(for example due to temporary unavailability of a third party
web service). Fortunately, the sheer scale of Google’s test
operation provides a wealth of data that helps us to detect
many of these false positives. Based on their fault histories,
a heuristic decision procedure now widely adopted within
Google, was developed for this project to filter out these
environmental failures.

We use the Two-Archive Multi-Objective Evolutionary
Algorithm (MOEA) as the optimisation engine [6]. The rep-
resentation of individual solutions is an n-ary bitstring, in
which digits mark the inclusion/omission of each test in T .
The multi-objective regression test optimisation was been
implemented into a tool called TIPS (Test Information Pri-
oritisation & Suggestions). The core of TIPS is the Two-
Archive MOEA written in Python. Various metric collec-
tion modules provide the fitness function imnformation to
the optimisation engine.

3.1 Benefits of Pre-Submit Test Optimisation
Automated test suite optimisation brings three primary

advantages to the developer during the pre-submit phase:

1. It is often costly for a developer to manually identify
tests that are relevant to their change, particularly for
tests designed for components that use the changed
code indirectly. Automated regression test optimiza-
tion removes this need for manual identification.

2. Early test feedback allows developers to understand
how dependent sub-components expect their module
to behave so that they can design their changes to be
compliant with existing code. Therefore, even when
the pre-submit phase passes all tests, the developer
receives useful early feedback about the tests executed.

3. Developers lose productivity by having to wait for large
sets of test cases to run. If there is a fault, then it is
clearly best to learn about it as soon as possible. The
pre-submit phase therefore increases the efficiency of
the overall process.

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

CL 15280480

Total #/cost from deps:58/17556, 1 failed
cpu time(sec)

de
pe

nd
en

cy
 c

ov
er

ag
e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

suggested test subsets
fault−detecting subsets

(a)

0 5000 10000 15000 20000 25000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

CL 15433836

Total #/cost from deps:348/51320, 2 failed
cpu time(sec)

de
pe

nd
en

cy
 c

ov
er

ag
e

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●
●●

●

● ●

●

●

●●

●

●
●

●
●

●

●●● ●

●
● ●

●
●

●

●

suggested test subsets
fault−detecting subsets

4000 6000 8000 10000 12000

0.
50

0.
55

0.
60

0.
65

0.
70

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b)

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

CL 15364723

Total #/cost from deps:89/8775, 19 failed
cpu time(sec)

de
en

de
nc

y
co

ve
ra

ge

●

suggested test subsets
fault−detecting subsets

(c)

Figure 2: Results from the test suite optimisation: each point corresponds to a subset of tests proposed by the
technique. In Figures 2(a) and 2(b), multiple cost/coverage Pareto fronts can be observed. This is because
all three graphs also report the third fault history objective (flattened onto 2D rendering of the 3D Pareto
surface). Rightmost Pareto fronts in the 2D rendering consist of subsets that achieve lower dependency
coverage but higher fault history coverage per unit cost. Solid circles denote optimised test suites that reveal
new faults. The distribution of these highlights the importance of fault history as an objective. The Pareto
surface for Figure 2(c) consists of a single Pareto front because no fault history is available in this case.

3.2 ABBA: Adaption Breeds Better Adoption
In seeking any form of technology transfer from academic

research into industry, there is likely to be significant adap-
tion of techniques to make them work in practice. This
adaption often involves familiar challenges such as scalabil-
ity, but there are also more prosaic practical considerations:
existing industrial practice may actually work rather well;
if it did not then company would not be in business. This
is manifestly true at Google, which has achieved dramatic
growth and managed the consequent testing scale up in the
process of growing. Academic research does have a role to
play: it can help to optimise existing approaches. Regression
test optimisation is all about achieving this goal. However,
for it to work in practice, the techniques have to be incor-
porated with minimum disruption to existing infrastructure,
procedures and policies; a kind of optimisation goal in itself.

Given the existing context at Google, our goal was not to
reduce the number of tests to execute: the continuous build
and integration system will ensure that all relevant tests are
eventually executed, retaining full fault detection capability.
Rather, the benefits for developers lay in retaining a useful
partial fault detection capability in a subset of all test cases
selected to be prioritised for early execution.

4. EVALUATION
In order to evaluate our approach, we have analysed, in

detail, 28 randomly sampled changes submitted to Google’s
code repository1. We harvested metrics from Google’s con-
tinuous build and integration infrastructure: the number of
relevant tests, test execution time and (filtered) failure de-
tection. Table 1 summarised test suite sizes and execution
time.

1A more complete evaluation will be reported upon in a
subsequent journal version of this paper.

Table 1: Summary of Test Suites
Property Min. Average Max.

Test Suite Size 4 461 1,439
Execution Time (sec) 115 39,093 116,131

Our Pareto efficient multi-objective optimisation yields a
set of solutions that reflect the trade offs inherent in bal-
ancing the three competing objectives we seek to optimise:
dependency coverage maximisation, historical fault detec-
tion maximisation and execution time minimisation. For
example, a set of tests, A, may achieve higher dependency
coverage than another set of tests, B, but also require longer
to execute than B. In such a situation both solutions lie on
a Pareto surface, since they are equally valid solutions.

The shape of the surface gives insights to the trade offs
between the optimisation objectives. It is hard to depict a
3D Pareto surface in 2D, so we flatten the 3 dimensions to
2, using multiple 2D curves show the different parato fronts
corresponding to different levels of historical fault detection.

Figure 2 presents selected illustrations of results from the
28 evaluated code submissions2. Each circle corresponds to
a subset of tests that are generated by the optimisation: the
shape of each curve is a Pareto front revealing the trade-
offs between the execution time (x-axis), the dependency
coverage (the left y-axis). Empty circles denote subsets that
fail to detect any new faults, whereas solid circles denote
subsets that do.

Figures 2(a) and 2(b) illustrate ideal cases for our ap-
proach: the optimised subsets detect faults even with rela-
tively low dependence coverage. Both reveal multiple pat-
terns of trade-off between dependency coverage, fault history
and cost.

2Our complementary technical report [12] gives full details
of all 28 cases.

However, Figure 2(c) represents a less ideal case. There
is only a single front for this figure because no test has a
fault history. In this case optimising for dependency cover-
age alone does not yield early fault detection: 19 of the 89
tests revealed a new fault for this change, yet none of the
optimised subsets contains any of these 19 failing tests.

Overall, our results indicate that fault histories are useful
optimisation goals: Out of the 28 evaluated code submission,
23 contained faults. Optimisation resulted in test subsets
that detected those faults early for 20 submissions, thereby
reducing time to first fault in 86% of cases.

However, when no fault history information was available,
optimisation failed to find fault-revealing test subsets. Fur-
ther research is required to investigate the observations more
rigorously. Figure 3 presents boxplot summaries of our sam-
ple of 28 changes. Overall, the developer can expect 33%–
82% reduction in testing time compared to executing all
relevant tests.

Time of Full dCov Size for Full dCov Min. Time to Fail Lowest dCov to Fail

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Statistical Summary

Figure 3: Optimised test subsets compared to com-
plete suites (full testing). Execution time can be
reduced by as much as 33%. Earliest fault detection
time can be reduced by as much as 82%.

5. FUTURE CHALLENGES
Google is not alone in operating within a rapid release test

environment. Many companies release rapid updates from
continual changes to a large code base. Our work raises the
following research and engineering challenges, the solutions
to which may further improve the effectiveness of regression
testing in similar highly constrained ‘rapid release’ scenarios:

Environmental Nondeterminism: tests that are sensi-
tive to environmental factors need to be pre-filtered to im-
prove the metrics that guide optimisation, raising the ques-
tion of how best to define such filtering decision procedures.
Test Aware Dependence: A build dependence between
some module and a test may not mean that the test truly
tests the dependent module. At this module level of abstrac-
tion better metrics are required to capture the tester-testee
relationship between modules. Greater dependence preci-
sion will provide more accurate fitness information, thereby
better guiding the search for good tests.

Dependency Hot-spots: Core libraries are ‘dependency
hot spots’. Changing them inherently requires a lot of re-
testing, raising the question of how can we effectively hy-
bridise existing optimisation and analysis techniques to cope
with dependency hot spots.

6. CONCLUSION
This paper reports experience and initial results from a

project to integrate search based regression test optimisation
into Google’s regression testing processes. We use coarse-
grained module dependency coverage to achieve scalability
and multiple test objectives to improve practicality by in-
corporating additional factors into the optimisation process.
Initial results indicate that a 33%–82% reduction in testing
time may be achieved by optimisation.
Acknowledgement: This work is funded by the EPSRC
project SEBASE and by a Google Research Award.

7. REFERENCES
[1] L. C. Briand, Y. Labiche, K. Buist, and G. Soccar.

Automating impact analysis and regression test
selection based on UML designs. In ICSM 2002, pages
252–261. IEEE Computer Society, October 2002.

[2] P. Copeland. Google’s innovation factory: Testing,
culture, and infrastructure. In ICST 2010, ICST ’10,
pages 11–14. IEEE Computer Society, 2010.

[3] M. Harman. Making the case for MORTO: Multi
objective regression test optimization. In Regression
2011, Berlin, Germany, Mar. 2011.

[4] S. McMaster and A. Memon. Call-stack coverage for
GUI test suite reduction. IEEE Transactions on
Software Engineering, 34(1):99–115, 2008.

[5] J. Offutt, J. Pan, and J. Voas. Procedures for reducing
the size of coverage-based test sets. In Proceedings of
the 12th International Conference on Testing
Computer Software, pages 111–123, June 1995.

[6] K. Praditwong and X. Yao. A new multi-objective
evolutionary optimisation algorithm: The two-archive
algorithm. In CEC 2006, volume 4456 of Lecture Notes
in Computer Science, pages 95–104, November 2006.

[7] G. Rothermel and M. J. Harrold. A safe, efficient
algorithm for regression test selection. In ICSM 1993,
pages 358–367, September 1993.

[8] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing
test cases for regression testing. IEEE Transactions on
Software Engineering, 27(10):929–948, October 2001.

[9] S. Yoo and M. Harman. Pareto efficient
multi-objective test case selection. In ISSTA 2007,
pages 140–150. ACM Press, July 2007.

[10] S. Yoo and M. Harman. Regression testing
minimisation, selection and prioritisation: A survey.
Software Testing, Verification, and Reliability, to
appear, 2011.

[11] S. Yoo, M. Harman, P. Tonella, and A. Susi.
Clustering test cases to achieve effective & scalable
prioritisation incorporating expert knowledge. In
ISSTA 2009, pages 201–211. ACM Press, July 2009.

[12] S. Yoo, R. Nilsson, and M. Harman. Faster fault
finding at google using multi objective regression test
optimisation. Technical Report RN/11/15,
Department of Computer Science, University College
London, 2011.

