
Hyperheuristic Observation Based Slicing of
Guava

Seongmin Lee1 and Shin Yoo1

Korea Advanced Institute of Science and Technology
Republic of Korea

Abstract. Observation Based Slicing is a program slicing technique that
depends purely on the observation of dynamic program behaviours. It it-
eratively applies a deletion operator to the source code, and accepts the
deletion (i.e. slices the program) if the program is observed to behave
in the same was as the original with respect to the slicing criterion.
While the original observation based slicing only used a single deletion
operator based on deletion window, the catalogue of applicable deletion
opeartors grew recently with the addition of deletion operators based on
lexical similarity. We apply a hyperheuristic approach to the problem
of selecting the best deletion operator to each program line. Empirical
evaluation using four slicing criteria from Guava shows that the Hyper-
heuristic Observation Based Slicing (HOBBES) can significantly improve
the effeciency of observation based slicing.

1 Introduction

Program slicing aims to delete parts of the source code that does not affect the
value of a specific variable at a point of interest [8]. While many applications,
including testing [4], debugging [1]. maintenance [5], and program comprehen-
sion [6], have been proposed, program slicing suffered from limitations in scal-
ability and lack of support for multi-lingual systems: both due to the fact that
traditional slicing techniques rely heavily on static dependency analysis.

Observation Based Slicing (ORBS) [2, 3] is a new slicing technique that is
purely dynamic and language independent. The intuition behind ORBS is that
program slicing can be simply conceived as a series of deletions that preserves the
behaviour of the program. The original ORBS iteratively considered deletions of
consecutive lines. Recently, new deletion operators, based on lexical similairity,
have also been introduced, increasing the pool of deletion operators for ORBS.

This paper evaluates a Hyperheuristic Observation Based Slicing (HOBBES).
HOBBES applies deletion operators iteratively at each program line, but it uses
a hyperheuristic approach to choose the next deletion operator. We formulate
an online selective hyperheuristic approach using all available deletion operators
as the lower level heuristic. The results of the empirical study using four slicing
criteria from Guava project suggest that HOBBES can bring the best of both
worlds: HOBBES can finish the given number of iterations sigficantly faster than
Window-ORBS, while being able to delete comparable numbers of lines.

2 HOBBES: Hyperheuristic Observation Based Slicing

2.1 Observation Based Slicing

ORBS is not only language independent [2] but also can slice programs [3] or
even graphics generated by Picture Description Languages [9] that traditional
slicers cannot handle. This is because it decides whether to delete certain lines
or not based on dynamic observation rather than static dependency analysis.

The deletion operator used by the original ORBS is called a Window-deletion
(we hereby call the original ORBS with Window-deletion as W-ORBS): if delet-
ing a single line results in failure (in either compilation or preservation of execu-
tion trajectories), it incrementally attempts to delete up to n consecutive lines,
n being a parameter to the operator. This way, W-ORBS can delete lines that
can only be deleted together (such as openning and closing curly brackets in
C.). While the W-ORBS can successfully slice various programs, one of its major
limitations is the time efficiency. For each line, W-ORBS may attempt up to n
compilations and executions before accepting its deletion.

2.2 Deletion Operators Based on Lexical Similarity

Recently, a new group of deletion operators, based on lexical similarity in the
source code, have been introduced [7]. Vector Space Model (VSM) deletion oper-
ator (hereby called VSM-deletion) represents all source code lines in VSM, and
attempts to delete the current line under consideration as well as all other lines
that are within the distance δ from the current line. Latent Dirichlet Analysis
(LDA) deletion operator (hereby called LDA-deletion) works similarly, but uses
LDA-based topic modeling to measure distances between source code lines. With
both operators, the intuition is that the lines, that are lexically similar with each
other, are likely to have a dependency, so they should be deleted together. Both
operators have been shown to provide an attractive cost-benefit trade-off: while
they produce larger slices, they are also significantly faster than W-ORBS.

While ORBS using VSM- or LDA-deletion provide better time efficiency
compared to W-ORBS, the new operators only delete about 25% of the lines
deleted by W-ORBS. This is because neither VSM- nor LDA-deletion can delete
lines that are not related by lexical similarity together.

2.3 Algorithm of HOBBES

Algorithm 1 presents HOBBES. It takes the source program P, a slicing criterion
(v: variable, l: line index), a set of deletion operators D = {D1, ...,Dn}. After
instrumenting the slicing criterion and establishing the original trajectory V , it
initializes the selection probability of each deletion operator.

HOBBES iteratively attempts to delete the source code, choosing a deleteion
operator to apply at each line based on the corresponding selection probability.
A chosen deletion operator creates a candidate slice: depending on the success
of compilation and preservation of trajectories, HOBBES decides whether to

Algorithm 1: HOBBES
input : Source program, P = {p1, ..., pn}, slicing criterion, (v, l, I), Set of deletion

operators, D = {D1, ...,Dn}
output: A slice, S, of P for (v, l, I)

1 O ← Setup(P, v, l)
2 V ← Execute(Build(O), I)
3 D ← InitOperator (D) /* D is set of (Dk, P (Dk)) */
4 repeat
5 deleted← False
6 i← 1
7 while i ≤ Length (O) do
8 Dcurr← SelectOperator(D)

9 O′ ← Dcurr(O)

10 compile, execute, line cnt← DeleteAttempt(O′, V)
11 D ← UpdateScore(D,Dcurr, compile, execute, line cnt)
12 if execute then
13 O ← O′

14 deleted← True

15 end
16 i← i + 1

17 end

18 until ¬deleted
19 return O

accept the candidate slice (i.e. the chosen deletion) and updates the selection
probability of the chosen deletion operator.

2.4 Studied Deletion Operators

The library of deletions operator consists of 12 different deletion operators. We
break down the original Window-deletion operator to four individual deletion
operators with fixed size deletion windows: this results in four fixed Window-
deletion operators that delete one, two, three, and four consecutive lines re-
spectively. The remaining operators are VSM- and LDA-deletion operators with
δ = {0.9, 0.8, 0.7, 0.6}. We fixed the topic size of the LDA-deletion operators to
500 based on previous results; the LDA approach also generates the topic model
only once at the beginning (see the previous work [7] for more details).

2.5 Selective Hyperheuristic

The selection probability of a deletion operator Dk, P (Dk) is initialized as 1
|D|

by InitOperator. The function SelectOperator is a roulette wheel selection
based on the probabilities.

The function UpdateScore updates P (Dk) as follows:

newP (Dk) =

{
ωcomp · P (Dk) when compile fails

ωexec · P (Dk) when compile suceeds and execution fails

(1 + log10 l) · P (Dk) otherwise

The penalty values, ω, for the compilation or execution failures, are set as
ωcomp, ωexec ∈ [0, 1), ωcomp ≤ ωexec. Here, l denotes the number of lines deleted
by the chosen operator (note that log10 l > 0). In this study, we set ωcomp as 0.8
and ωexec as 0.9. UpdateScore linearly normalizes the selection probabilities
so that ΣkP (Dk) is always 1.0.

Table 1. Result of Compile, Execute, Deletion per Time

Iter1 Iter2 Iter3 Iter4 Iter5
Subject Strategy C E D/T C E D/T C E D/T C E D/T C E D/T

escape1 HOBBES 502 66 0.20 926 104 0.13 1321 135 0.11 1699 165 0.09 2060 192 0.09
W-ORBS 1711 183 0.10 3137 267 0.06 4523 342 0.04 5840 415 0.03 NA NA NA

escape2 HOBBES 1332 214 0.21 2424 309 0.15 3430 388 0.12 4384 455 0.11 5289 516 0.09
W-ORBS 4179 655 0.13 7383 922 0.08 10436 1159 0.06 13460 1390 0.05 14116 1558 0.05

net1 HOBBES 513 70 0.17 955 114 0.11 1374 154 0.09 1771 189 0.08 2154 224 0.07
W-ORBS 1759 189 0.09 3251 280 0.06 4707 364 0.04 6141 448 0.03 7174 517 0.03

net2 HOBBES 1341 222 0.20 2444 324 0.14 3460 402 0.11 4425 473 0.10 5346 536 0.09
W-ORBS 4332 667 0.11 7781 963 0.07 11077 1237 0.05 14337 1504 0.04 14993 1672 0.04

3 Experimental Setup

3.1 Research Questions

We ask the following research questions:
RQ1: How efficient is HOBBES compare to W-ORBS? Previous work [7] showed
that Window-deletion and the lexical similarity based deletion exhibit different
cost-benefit trade-offs. RQ1 investigates whether using the selective hyperheuris-
tic can improve the time efficiency of ORBS. We answer RQ1 by comparing the
number of deleted lines, as well as the time the slicing took, between HOBBS
and W-ORBS.
RQ2: Does HOBBES actually use all deletion operators adaptively? That is,
does any single deletion operator exhibit dominant usage? We check whether
HOBBES makes use of all operators adaptively by tracing the selection proba-
bilities of each operator throughout the slicing operation.

3.2 Subjects, Configuration, and Environment

The slicing subjects have been chosen from the Guava library. We select two
packages, com.google.common.escape and com.google.common.net, each with
590 and 1,569 LOCs. We choose 2 slicing criteria for each subjects. Since W-
ORBS always produces the same slice for a deterministic program, we execute
W-ORBS only once for each criterion. We repeat HOBBES 10 times to cater for
the stochasticity in selection as well as in the LDA process.

The experiments have been performed on machines with Intel Core i7-6700K
running Ubuntu 14.04.5 LTS. ORBS has been implemented in Python, whereas
the subject programs have been built using Java version 1.8.

4 Results

RQ1. Efficiency of HOBBES: Figure 1 shows the results of W-ORBS and
HOBBES for the four slicing criteria. The x-axis represent the slicing itera-
tions, going up to the number of iterations W-ORBS requires to terminate. The
barplots and lines represent the cumulative numbers of deleted lines and execu-
tion time, respectively. The result shows that, on average, HOBBES can delete
about 71% of the number of lines that W-ORBS deletes. However, HOBBES
only takes about 30% of the time spent by W-ORBS.

Fig. 1. Comparison Between W-ORBS, HOBBES

●

●

●

●

1 2 3 4

0
10

0
20

0
30

0
40

0

0
20

00
60

00
10

00
0

Iteration

of

 D
el

et
ed

 L
in

es

T
im

e(
s)

Escape_1

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

●

●

●

●
●

1 2 3 4 5

0
20

0
60

0
10

00

0
50

00
15

00
0

25
00

0

Iteration

of

 D
el

et
ed

 L
in

es

T
im

e(
s)

Net_1

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

●

●

●

●

●

1 2 3 4 5

0
50

15
0

25
0

35
0

0
40

00
80

00
12

00
0

Iteration

of

 D
el

et
ed

 L
in

es

T
im

e(
s)

Escape_2

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

●

●

●

●
●

1 2 3 4 5

0
20

0
60

0
10

00

0
50

00
15

00
0

25
00

0

Iteration

of

 D
el

et
ed

 L
in

es

T
im

e(
s)

Net_2

●

W−ORBS Deletion
HOBBES Deletion
W−ORBS Time
HOBBES Time

Table 1 shows the detailed results of W-ORBS and HOBBES until their fifth
iteration. HOBBES performs fewer compilations and executions than W-ORBS,
while showing higher time efficiency (i.e. more deletions per time). Answering
RQ1, we report that HOBBES can improve the time efficiency of W-ORBS.

RQ2. Participation of Deletion Operators: Figure 2 shows how the selec-
tion probabilities of deletion operators change throughout the slicing of net 1.
No deletion operator dominates the selection; also, there exist several peaks
of different colours. We interpret this as each deletion operator being used at
different stages by HOBBES. Note that the probabilities for both VSM- and
LDA-deletion operators increased early in the slicing because these operators
are not limited in the number of lines they can delete. However, we also observe
that Window-deletion operators are also selected at different times.

5 Conclusion

We introduce a hyperheuristic version of ORBS, called HOBBES. HOBBES
applies a selective hyperheuristic to choose a deletion operator iteratively at
each source code line. A case study of HOBBES on two packages in the Guava

library, using 12 deletion operators, shows that HOBBES can delete 71% of the
number of lines deleted by W-ORBS, using only 30% of the time. Future work
will investigate more diverse deletion operators as well as more sophisticated
selective hyperheuristic algorithm.

Fig. 2. Change of Probability of Deletion Operators

0 5000 10000 15000

0.
0

0.
1

0.
2

0.
3

0.
4

Deletion Attempt

P
ro

ba
bi

lit
y

LDA:0.6
LDA:0.7
LDA:0.8
LDA:0.9

VSM:0.6
VSM:0.7
VSM:0.8
VSM:0.9

Window:1
Window:2
Window:3
Window:4

References

1. Agrawal, H., DeMillo, R.A., Spafford, E.H.: Debugging with dynamic slicing and
backtracking. Software Practice and Experience 23(6), 589–616 (Jun 1993)

2. Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S.: ORBS: Language-
independent program slicing. In: Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineering. pp. 109–120. FSE
2014 (2014)

3. Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S.: ORBS and the
limits of static slicing. In: Proceedings of the 15th IEEE International Working
Conference on Source Code Analysis and Manipulation (2015)

4. Binkley, D.W.: The application of program slicing to regression testing. Information
and Software Technology Special Issue on Program Slicing 40(11 and 12), 583–594
(1998)

5. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE
Transactions on Software Engineering 17(8), 751–761 (Aug 1991)

6. Korel, B., Rilling, J.: Program slicing in understanding of large programs. In: 6th

IEEE International Workshop on Program Comprenhesion (IWPC’98). pp. 145–
152. IEEE Computer Society Press, Los Alamitos, California, USA (1998)

7. Lee, S., Yoo, S.: Using source code lexical similarity to improve efficiency of ob-
servation based slicing. Tech. Rep. CS-TR-2017-412, School of Computing, Korean
Advanced Institute of Science and Technology (January 2017)

8. Weiser, M.: Program slicing. In: 5th International Conference on Software Engineer-
ing. pp. 439–449. San Diego, CA (Mar 1981)

9. Yoo, S., Binkley, D., Eastman, R.: Observational slicing based on visual semantics.
Journal of Systems and Software 129, 60–78 (2016)

