UCL DEPARTMENT OF
COMPUTER SCIENCE

Research Note
RN/13/13

Observation-Based Slicing

June 20, 2013

David Binkley', Nicolas Gold?, Mark Harman?, Jens Krinke?, and Shin Yoo?,

Affiliation: Loyola University! University College London?
E-Mail: binkley @cs.loyola.edu, n.gold @ucl.ac.uk, mark.harman @ucl.ac.uk
j-krinke @cs.ucl.ac.uk, shin.yoo@ucl.ac.uk

Abstract

Program slicing reduces the size of source code by statement deletion, while preserving the
behaviour of a program with respect to a criterion. Previous approaches use complex analyses
to identify deletion candidates. This typically requires language-specific algorithms and thus
limits tool applicability to systems written in a single language. We present Observation-Based
Slicing (ORBS), a language independent slicing technique capable of slicing multi-language
systems and also systems that contain (third party) binary components. A potential slice ob-
tained through repeated statement deletion is validated by observing the behaviour of the pro-
gram under the criterion: if the sliced and original programs behave the same, the deletion
is accepted. We evaluate ORBS on programs of different sizes, showing its feasibility and
comparing it to dynamic slicing approaches. The results show that an ORBS slicer is simple to
construct, effective at slicing, and able to handle systems written in multiple languages without
specialist analysis tools.

Observation-Based Slicing Binkley et al.

1 Introduction

Since Weiser introduced program slicing [14] more than thirty years ago, hundreds of papers have appeared
and countless research prototypes have been developed. Most of them can be classified as being either static
or dynamic: A static slice considers all possible executions of the program to be sliced while a dynamic
slice considers a specific execution.

Two long standing challenges in program slicing are to slice systems that (a) consist of components written
in different programming languages and (b) contain binary components or libraries. Although one may
be able to slice those components of the system written in a particular single language, the resulting slice
has limited utility because one either has to ignore the effects of the other components or use worst-case
assumptions for them. Doing so results in a slice that contains too many false positives or negatives,
respectively.

However multi-language codes are the norm. For example, Jones suggests that the number of languages
in a software system is often between two and fifteen and, motivating our approach, notes that the costs of
development and maintenance rise with the number of languages [7, pp. 504-505]. The potential impact of
a multi-language slicing tool is thus multiplied compared to one developed for a single language.

Consider, for example, the source code shown in Figure 1, which consists of three components in three
languages: A Java and a C program connected by some Python glue. Assume that you want to know
which statements can influence the value of the variable dot s just after Line 13 of checker. java. A
backward slice would capture the set of influencing statements (Figure 2 shows the slice as computed using
our implementation), but the authors are not aware of any previous program analysis approach that can
handle such systems without requiring complex abstract language models [11] or restrictions to particular
groups of languages [10].

This paper presents an algorithm and implementation that can compute slices for such systems. In addition
to handling multiple languages, it removes the need to replicate much of the compiler’s work (e.g., parsing
the code being analysed), instead the approach leverages the existing build tool-chain. ORBS thus pro-
vides a way to construct a slicer out of the build tools already being used rather than requiring the costly
development of a new language-specific toolset.

Informally, Weiser defined a slice to be a subset of a program that preserves the behaviour of the program
for a specific criterion. Although he defined the slice subset in terms of statement deletion, almost no
approach actually uses deletion. Instead most slicers compute slices by analysing dependences in the
program to establish which statements must be retained.

Our approach actually deletes statements, executes the candidate slice, and observes the behaviour for
a given slicing criterion. The resulting slices have the same observed behaviour for the criterion as the
original program. Because we compute slices for a specific set of executions, our slices are similar to
dynamic slices. However, as there are important differences (discussed later), we call them observation-
based slices.

The contributions of this paper are

e an algorithm for computing observation-based slices,
e a prototype implementation of the algorithm,
o feasibility studies that demonstrate the application and operation of the approach, and

e a case study that explores characteristics of the new algorithm.

The rest of the paper is structured as follows: Section 2 presents the definitions of a slice used in this paper,
Section 3 discusses observation-based slicing and presents the algorithm and its implementation. Section 4

RN/13/13 Page 1

Observation-Based Slicing Binkley et al.

checker.java: glue.py:

1 eclass checker { # Glue reader and checker together.

1
2 public static void main(String[] 2 import commands
args) { 3 import sys
3 int dots = 0; 4
4 int chars = 0; 5 use_locale = True
5 for (int i = 0; i < args[0]. 6 currency = "?2"
length(); ++1i) | 7 decimal = ", "
6 if (args[0O].charAt (i) == ".") 8
{ 9 if use_locale:
7 ++dots; 10 currency = commands.getoutput (’./
8 } else if ((args[0].charAt (i) reader 0')
>= 0") 11 decimal = commands.getoutput (’ ./

9 && (args([0].charAt (i) reader 17)

<= '"9")) { 12
10 ++chars; 13 cmd = (’java checker ’ + currency
11 } 14 + sys.argv[l] + decimal + sys.
12 } argv([2])
13 System.out.println(dots); // I15 print commands.getoutput (cmd)

SLICE HERE

14 System.out .println (chars);

15 }
16}

reader.c:

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <locale.h>

4

5 int main (int argc, char xxargv) {

6 setlocale (LC_ALL, ""™);

7 struct lconv xcur_locale =

localeconv () ;

8 if (atoi(argv[l]))

9

10 printf ("$s\n", cur_locale->
decimal_point);

11 }

12 else

13 {

14 printf ("$s\n", cur_locale->
currency_symbol);

15 }

16 return 0;

Figure 1: Example Multi-Language Application

discusses the research questions used to investigate ORBS. Sections 5 and 6 present basic results and a case
study respectively. Section 7 discusses the influence of external factors. Finally, Section 8 presents related
work and Section 9 concludes.

2 Slicing Definitions

Static slicing [15] computes a subset of a program such that executing the subset will have the same be-
haviour for a specified variable at a specified location (the slicing criterion) as for the original program for
all possible inputs. Dynamic slicing [8] uses a specific input and only preserves the behaviour for that input.
Most work on dynamic slicing (e.g., the work of Agrawal and Horgan [1]) offers only a description rather
than a definition of the term. Thus there exist many different formulations of dynamic slicing, relating often

RN/13/13 Page 2

Observation-Based Slicing Binkley et al.

checker.java: glue.py:

1 eclass checker { import commands

1
2 public static void main(String[] 2 import sys
args) { 3 use_locale = True
3 int dots = 0; 4 if use_locale:
4 for (int i = 0; i < args|[O0]. 5 currency = commands.getoutput (’./
length(); ++i) { reader 07)
5 if (args[0O].charAt (i) == ".") 6 decimal = commands.getoutput (’./reader
{ 1)
6 ++dots; 7 cmd = (’Jjava checker ’ + currency
7 } 8 + sys.argv[l] + decimal + sys.argv
8 } [21)
9 } 9 print commands.getoutput (cmd)
reader.c:

1 #include <locale.h>

2 int main(int argc, char x*xargv) {

3 struct lconv *cur_locale =
localeconv () ;

4 if (atoi(argv[l]))

5 {

6 printf ("$s\n", cur_locale->

decimal_point);

Figure 2: Multi-Language Sliced Example

to the particular technique being reported to compute the slices, rather than to an appropriate definition.
We use a generalised definition of dynamic slicing that involves a state trajectory and a projection function,
PROJ [15]. Informally each state in a trajectory gives the value of each of the program’s variables, while
the projection function extracts those values relevant to a slicing criterion. The generalised definition of
a dynamic slice is based on Weiser’s definition of a static slice [15] (additions are shown in italics). This
definition is similar to Korel and Laski’s [8] definition:

A dynamic slice S of a program P on a slicing criterion C' and for inputs T is any executable
program with the following two properties.

1. S can be obtained from P by deleting zero or more statements from P.
2. Whenever P halts on an input [from Z with state trajectory 7', then .S also halts on input

I with state trajectory 7", and PROJo(T) = PROJ(T"), where PROJ is the projection
function associated with criterion C.

Note that the projection function and the criterion define the type of dynamic slicing: Usually, the criterion
for a dynamic slice includes the inputs Z and is given as (v;, [, Z) denoting variable v at location [for the ith
occurrence in the trajectory. However, this can also be specified as (v, [, Z) denoting variable v at location
[for all occurrences in the trajectory.

Naturally, one is interested in finding the smallest slice possible. A slice is considered to be minimal if no
further statement can be removed from it without causing it to be no longer a slice. There may be more
than one minimal slice for a given program and slicing criterion [14].

3 Observation-Based Slicing

The definition of a dynamic slice holds the key to solving the challenges of multi-language and mixed
source/binary slicing, slicing by actually deleting statements and executing the program to observe if the

RN/13/13 Page 3

Observation-Based Slicing Binkley et al.

projected trajectory is the same.

The infrastructure for this approach is simple:

e Capturing the state trajectory is only required for the slicing criterion (i.e., a variable at a specified
location in a single component). All other elements of the trajectory are removed by projection.

e Deletion of statements is only necessary for the components one is interested in.

e Other components can be used as they are.

Under these conditions, one can slice any software system where statements are deleted from the compo-
nents of interest, the component containing the criterion is instrumented to capture the (projected) trajectory
for the criterion, and the system can be generated and executed with the modified components. Implemen-
tation is correspondingly simple. Our ORBS implementation contains just 170 SLOC of python code and
10-20 lines of shell script depending on the project.

3.1 Algorithm and Implementation

Observation-based slicing is based on preserving the relevant part of the state trajectory from the execution
of an original program P. For the slicing criterion (v, [, Z) composed of variable v, line [, and set of inputs
Z, the execution of P for every input [in Z produces a sequence of values V' (P, I, v,) for variable v at line
[. S, asubset of P, is an observation-based slice for criterion (v,{,Z) iff V;ezV (P, I,v,l) = V(S,I,v,1).
We call the sequences V' trajectories for the criterion (v, {,Z). The implementation produces V' (P, I, v,[)
by injecting a statement just before line [/ that captures the value of v and writes it to a file.

We are interested in small subsets, thus we will try to delete as many statements from P as possible such
that the subset is still an observation-based slice. However, we are not aiming at finding the smallest
possible subset as this search can become computationally intractable.

The concept of a statement is language dependent. For example, a language like C has expressions with
side effects and concatenation just like statements. As we want to be language independent, we delete
lines from a source file and assume that the source files are formatted in a way such that there is no more
than one statement on a single line. When this assumption is violated, the ORBS slicer will still work but
may produce larger slices since the granularity of deletable objects will be larger (see Section 7 for further
discussion on this).

Our algorithm for observation-based slicing, ORBS, works by iteratively deleting more and more lines (as
long as the result is an observation-based slice) until no more lines can be deleted. A single iteration of
ORBS attempts to delete lines of code from the source code and validates the deletion by compiling and
executing the candidate, and comparing the trajectory against the trajectory for the original program. If a
deletion produces compilation errors, the deletion cannot produce a correct executable slice. Similarly, if
a deletion leads to a slice that produces a different trajectory from the original, the slice is not correct. A
deletion is accepted as a part of a valid slicing action if it passes both checks.

Algorithm 1 presents ORBS. It starts by setting up the program to capture the resulting trajectory for slicing
criterion (v,) and then executing it for all inputs Z, storing the trajectory. The setup step simply inserts
a (non side-effecting) line just before line [that captures the value of variable v. The main loop tries to
delete lines, as long as the deletion still results in a slice, until no more lines can be deleted. It does this
using a Moving Deletion Window (MDW) implemented by the for loop on Line 9, which tries to find
the minimal sequence of lines that can be deleted together such that the deletion results in a compilable
program. If X’ compiles, it is executed (at Line 16) and the trajectory is captured. If this trajectory is the
same as the original trajectory, the algorithm accepts X’ as slice (i.e., accepts the deletion) and continues
looking for deletion opportunities in X’. Otherwise, it rejects the deletion and continues at the next line.

RN/13/13 Page 4

Observation-Based Slicing Binkley et al.

Algorithm 1: ORBS

ORBSLICE(S,v,!,Z,9)

Input: Source code, S = {s1,..., s}, slicing criterion, (v, [, Z), and maximum deletion window size, §
Output: A backward slice, X, of S for (v,,7)

(1) X < SETUP(S,v,1)

(2) BUILD(X)

(3) V «+ EXECUTE(X,Z)

(4) repeat

5 deleted < False

(6) 11

(7 while i < length(X)

(®) builds < False

9 forj=1tod

(10) X'~ X~ {'fCi? R xmin(length(X),iJrjfl)}
(11) if BUILD(X")

(12) compiles < True
(13) break

(14) if compiles

(15) V'« EXECUTE(X',7)
(16) itV =V’

17) X+ X

(18) deleted <+ True
(19) else

(20) 1 1+1

(21) until —deleted
(22) return X

For example, Figure 2 shows the slice generated by ORBS for the program shown in Figure 1. ORBS has re-
moved the code in checker . java responsible for counting digits and printing the results, in reader.c
the code for the currency symbol has been deleted, and in glue.py the variable initialisation has been
removed.

The deletion window size parameter places an upper bound on the number of lines that can be deleted
together in one deletion operation. Higher values offer potentially more precise slices (since longer multi-
line blocks of code can be deleted) but at the cost of increased slicing time. For example, consider the code
segment shown in Figure 3. ORBS cannot produce the minimal slice (i.e., Line 4) by attempting to delete
only a single line at a time. While deleting Line 2 alone is a legitimate slicing action, Lines 1 and 3 can
only be deleted in tandem because deleting only one of them results in a syntax error. ORBS avoids this
issue by increasing the MDW until the result passes both the compilation check and testing. Let us consider
the example in Figure 3 again. Assume that the maximum deletion window size is 2. In the initial pass,
MDW only supports the deletion of Line 2: other lines cannot be deleted either because of syntax errors
(e.g., from deleting Line 1 alone or Line 1 and 2), or trajectory comparison failures (e.g., from deleting
Line 4 because then the trajectory from the slice won’t match the trajectory from the original). After the
deletion of Line 2, in the next pass, the original Lines 1 and 3 are adjacent and can be deleted together, at
which point we achieve the desired slice.

ORBS does not know anything about the programming language, not even how comments are represented.
A deletion of a line that is part of a comment or the deletion of a blank line will not change the behaviour
of the program. Our implementation, rather than undertake the expense of re-testing in such cases, caches
compiled binaries. If a subsequent build produces a cache hit then there is no need to run the test cases as
the cached result can be used. Avoiding test execution is particularly beneficial when a deletion leads to a
non-terminating program (detected using a timeout). Avoiding the re-execution of a prospective slice that

RN/13/13 Page 5

Observation-Based Slicing Binkley et al.

if (x < 0) {
print x;

y = 42;

1
2
3}
4
5 //slice on y

Figure 3: Example Code for Deletion Window

reader.c:

1 #include <locale.h>

2 int main(int argc, char xxargv) {

3 struct lconv *cur_locale = localeconv();
4

5 printf ("$s\n", cur_locale->decimal_point);
6}
4

}

glue.py:

import commands

1
2 import sys

3 use_locale = True

4 currency = "?2"

5 1f use_locale:

6 decimal = commands.getoutput (’./reader 1')
7 cmd = (’java checker ’ + currency

8 + sys.argv[l] + decimal + sys.argv[2])
9 print commands.getoutput (cmd)

Figure 4: Sliced Example with Backward Deletion

will time out for most tests saves significant time. This approach is used in Section 6 where the number of
test executions needed is essentially halved.

A slight modification of the ORBS algorithm can cause a different observation-based slice. As defined, the
algorithm attempts deletions in a forward direction (i.e., it tries to delete later lines only after earlier lines
already have been deleted). If the traversal is inverted so that it starts with the deletion at the end of each file,
ORBS may produce a different slice. Consider the example in Figure 1 again. In glue.py a ‘backward’
ORBS deletes the execution of reader with the parameter 0 (Line 10) and leaves the initialisation of
currency instead (Line 6). Because reader is now always called with the parameter 1, the check for
the parameter in reader . c (Line 4) is no longer needed and is thus deleted. With the original algorithm,
the initialisation of currency in Line 6 is deleted before the deletion of the invocation is attempted.
However, in python a variable has to be defined before it can be used and thus the attempt to delete the
second of the two definitions will fail as it will cause a use of the undefined variable currency in Line 13.
Figure 4 shows the result with backward deletion.

4 Research Questions

RQI: Is observation-based slicing feasible? The first research question addresses the fundamental ques-
tions of ORBS. For example, does it delete anything from a program, is it computationally tractable on
even small programs, does it delete lines correctly? We answer this research question through a prototype
implementation and the results are discussed in Section 5.

RQ2: How do observation-based slices compare to the results of other dynamic slicing approaches? The
second research question addresses the features of observation-based slices by comparing the computed
slices to those computed on the same programs by other slicing approaches and tools. Specifically, we
consider Union Slicing [3] (using Whole Execution Trace (WET) slicing [18]), and Critical Slicing [5].

RN/13/13 Page 6

Observation-Based Slicing Binkley et al.

E SSEESD C O
L] int main(int argc, char x*argv) {
2] | | | int a;
3 | int z;
AR
SELr b int j;
6] | | a = atoi(argvI[l]);
700 x = 0;
8L [1] =35
O |1 | a =a - 10;
10| | | | if (a >) |
11| x =x + 1;
12 } else |
13 | z = 0;
14 |)
UL x=x+ 3
w1 |11 printf ("$d\u", x);
17 | return 0;
18 | |)

Figure 5: Comparison of E: Executed, S: Static Slice, SE: Executed Slice, ES: Static Slice for Executed,
D: Dynamic Slice, C: Critical Slice, O: ORBS

We also compare ORBS slicing with manually identified minimal slices.

RQ3: How does observation-based slicing scale? Assuming observation-based slicing works with small
programs, this research question will investigate how it behaves on a larger case study, the program bash.
The results are described in Section 6.

RQA4: What are the impacts of external factors on ORBS? Since ORBS relies on other tools to undertake
its slicing operations, the effect of these must be considered. This research question thus investigates the
effect of source code layout, the ordering of files analysed, and the effect of the environment (e.g. compiler
and operating system). The results are described in Section 7.

5 Experiments and Results

This section addresses RQ1 and RQ2, looking at the feasibility and operation of ORBS on a range of
small programs, in comparison to other related techniques. There are three related techniques we focus
on: DeMillo et al.’s Critical Slicing [5] where every statement is checked whether it is critical (i.e., the
statement cannot be deleted without changing the observed behaviour for the slicing criterion), Union
Slicing [3] where the dynamic slices from a set of test inputs are unioned, and STRIPE [4] that uses delta
debugging to find the smallest set of statements in a trace that cannot be skipped during an execution.

5.1 General Comparison

Figure 5 shows a comparison of ORBS to the approaches considered by DeMillo et al. [S5] when they
introduced Ceritical Slicing, using a minor modification of their example. The first column (‘E’), shows
the executed lines as measured by gcov. The results of applying six techniques are then shown in the
subsequent columns: Column ‘S’ shows the static slice (as computed by Codesurfer [2]), Column ’SE’
shows the “executed slice” (intersection of ‘S’ and ‘E’ [5]), Column 'ES’ shows the static slice computed
for the executed part of the program, Column ‘D’ shows the dynamic slice (as computed by WET [18]),
Column ‘C’ shows the critical slice (based on our own implementation of the algorithm of DeMillo et
al. [5]), and finally, Column ‘O’ shows the observation-based slice computed by ORBS. Note that only the
critical and the observation-based slice are actually executable.

RN/13/13 Page 7

Observation-Based Slicing Binkley et al.

int main(int argc, char xxargv) {

1
2 int a =0, b=0, x=-1, vy = 0;
3 a =1;

4 b =1;

5 x =5/ (ath);

6 y = (x>0)?1 : 2;

7 printf("%d\n", y); // slice here
8 return O;

9 }

Figure 6: Example where the Critical Slice is not a Slice

5.2 Detailed Investigations

Having made a general comparison of ORBS to various techniques on a small example, we now investigate
three techniques in further detail. Our investigation was based on three approaches: our own implementa-
tion of the Critical Slicing method of DeMillo et al. [5], the publicly-available implementation of WET!
which we wrapped in a python script to implement Union Slicing [3], and hand-computation of Cleve and
Zeller’s STRIPE [4].

We applied these three techniques, along with ORBS, to various small test programs using the same input
sets. The results are discussed below and various summary statistics are shown in Table 1. Overall, ORBS
produces smaller slices (except in one case) than Critical Slicing, but larger slices than Union Slicing. How-
ever, the union slices are syntactically incorrect and/or non-executable (as is expected for Union Slicing).
ORBS thus produces the most useful slices of all the techniques: they are both small and executable.

5.2.1 Critical Slicing

Although DeMillo et al. [5] implemented Critical Slicing on top of a debugger, they suggested a simpler
approach that deletes each individual line from the source code and then tests if the resulting code has the
same behaviour on a test set. The critical slice is the program without those lines where deletion produced
the same behaviour. We implemented this approach in a similar way to ORBS so that we can compare
Critical Slicing with ORBS in detail.

The first observation is that Critical Slicing is not guaranteed to produce legal slices: Although two lines
may individually be removed without changing the behaviour at the criterion, their joint removal may
produce a program with changed behaviour (or even fail to compile). Figure 6 shows an example. Either
Line 3 or Line 4 can be removed without changing the outcome at Line 7. Therefore, Critical Slicing will
not include the two lines in the critical slice (in addition to deleting Line 8). However, an execution of the
critical slice will fail at Line 5 due to the division by zero. ORBS, on the other hand, will only remove
Line 3 and Line 8 as it cannot remove Line 4 after it already removed Line 3 (backward ORBS would
remove Line 4 instead of Line 3).

The same occurs in the initial example in Figure 1: A critical slice will identify lines 6 and 10 in glue.py
as not being critical, as both can be removed individually. However, the resulting critical slice where both
lines are removed produces an error because no initialisation of variable currency is left and thus the
usage on Line 13 causes a runtime error. This problem is not uncommon, we experienced it with a few tests
as shown in Table 1. In three cases the critical slice does not compile (annotated with “(C)”) and in two of
seven cases the observed behaviour for the slicing criterion is different (annotated with “(B)”). Only in two
of seven cases is the critical slice a legal slice. This clearly illustrates that a critical slice does not capture
the behaviour-preserving semantics required to be a slice.

"http://wet.cs.ucr.edu/

RN/13/13 Page 8

Observation-Based Slicing Binkley et al.

ESCO
L] $sum = 0;
2 | $mul = 1;
3111 |print "a? "; $Sa = <>;
4] | | print "b? "; S$b = <>;
5| | | while ($a <= $b) {
6‘ | | | Ssum = S$sum + $a;
7111 $mul = $mul * S$a;
8] 11| sa=s%a+1;
9Of [17
10| | | | print "ORBS sum = ", $sum, "\n";
11|]| | print "ORBS mul = ", $mul , "\n";

Figure 7: STRIPE Test Case sample.pl

Table 1: Comparison of slices
(]

g 3 -
Test Subject a 7% g &) 3 O -
demillo 18 18 11 10| 7 12 5
interact 28 25 15 15120 19(B) 13
mbe_j_36 88 63 27 25|24 48(C) 15
mbe_ j_39 oo 124 48(C) 15
scam_x_32 79 63 27 27 |40 48(C) 15
wc_c_45 60 48 23 23|15 30 6*
wc_inword_29 ” ” ” 7128 36(B) 5*

5.2.2 Union Slicing

Beszédes et al. presented Union Slicing as a way to capture a summary of the source lines executed by a
number of test inputs on the same program [3]. Their approach unions dynamic slices from a set of test
inputs. The resulting slice is not necessarily executable. Since the aim of Union Slicing is similar to that
of ORBS, we implemented a union slicer on top of WET, which profiles programs and gathers various
types of information into a single unified structure [18]. One use of this structure is dynamic slicing. Since
WET uses criteria at the trace level, our implementation wraps it to execute over all trace instances that
correspond to the source criterion line, filtering the result for source lines, and forming the union of these
lines. The sets of lines from each slice are then unioned over all test cases to yield the union slice. As
expected, the resulting slices are typically not executable. In Table 1, the figures shown for Union Slicing
are for slices computed over all criterion instances in the trace with the exception of the wc subjects (starred
in Table 1) where the projected runtime was over 129 days. For these examples, only the final instance was
used for slice computation.

5.2.3 STRIPE

Cleve and Zeller [4] present STRIPE which uses delta debugging to identify the smallest subset of events
in an execution trace that are relevant in producing an observed failure. STRIPE first runs the program to
obtain an execution trace and then uses a debugger to skip statements in the trace. STRIPE works with perl
programs and only one example is given, shown in Figure 7, which is executed with the input “0 5 for
the slicing criteria sum in Line 10 and mul in Line 11. Column ‘E’ shows the lines that are executed for
this input (all of them). Column ‘S’ shows the lines that are not skipped by STRIPE. Note that STRIPE
operates on full traces where individual statements are skipped. Therefore, Line 6 is not executed in the
first instance (as sum and a are both O at that time), Line 7 is only executed in the first instance (as mul is
0 after that), and Line 8 is executed in all instances. It seems that STRIPE never includes control structures
(e.g., Line 5 and 9) which in addition leads to the skipping of statements that affect the predicates (e.g.,

RN/13/13 Page 9

Observation-Based Slicing Binkley et al.

Table 2: Four files of bash which are to be sliced with ORBS
File Lines | SLOC | Executable | Executed
variables.c 4793 3509 1590 607
parse.y 6011 4531 2393 753
lib/glob/glob.c | 1100 789 416 0
subst.c 9392 | 6890 3370 1123

Line 4). Both ORBS and Critical Slicing only remove the first two lines (their removal does not change the
outcome for the test “0 57).

STRIPE exhibits three disadvantages. The first is that it computes a trace subset which is not directly
mapped onto source code. The second is that it does not include control structures and consequently
statements affecting them — causing the result to be too small (and not a slice at all). The third is that it is
prohibitively expensive: Not only because the use of a debugging infrastructure brings significant overhead,
but the complexity of the delta debugging algorithm requires an order of magnitude more executions. For
the above example, STRIPE needed 176 executions while ORBS and Critical Slicing only needed 10
(ORBS needed 36 compilations? and Critical Slicing needed 12).

5.3 Summary

In answer to RQ1, we find that ORBS is feasible, simple to implement, and slices successfully. It deletes
appropriate lines and does not delete those it should not. To answer RQ2, we compared ORBS to several
techniques finding that of these, it produces typically smaller slices that retain executability over the whole
test set, and requires less computational expense.

6 Case Study

To address RQ3 and as a real-world case study, we consider an often-used non-trivial application: bash
(version 4.2), a Unix shell that is the default on Linux and Mac OSX. The bash source package includes
various tools and libraries that are needed to build it. The build is complex from a slicing perspective in
that during the build, source code is generated from a grammar and the build itself is strongly tied to the
target operating system. Together with its size, this makes bash a challenge to statically or dynamically
slice. Thus, bash is an excellent case study for ORBS.

The bash source package contains 1,153 files and a total of 118,167 source lines of code (SLOC) as
computed by sloccount [16]. This source is written in eight different languages. For this case study we
define a scenario (exercising the arithmetic functions of bash) and four execution cases. In the first two
cases we explicitly choose two source files to be included in the ORBS analysis. The files to be sliced are
variables.c, as variables are used in the tests, and parse.y, as the grammar defines the input format
(note that grammars have not been sliced before). The third and the fourth cases each add an additional file
to be sliced. Case 3 adds 1ib/glob/glob.c, which performs file-name pattern matching and Case 4
also adds subst . c, which is the largest single source code file within bash.

Table 2 shows different line-based measures for the four files: The number of lines in the file, the number of
source lines of code (SLOC), and the number of executed and executable lines as computed by gcov [12].
Note that nothing in 1ib/glob/glob. c is executed in the scenario being considered because the exe-
cution of arithmetic functions does not involve file-name pattern matching.

6.1 Slicing Criterion

The slicing criterion we chose for all four cases is the variable val in line 1393 of file expr.c with
the input given by a test file arith.tests. Atline 1393 the result of converting a string to an integer

Here, compilation means to let perl check the syntax of the program without fully executing it.

RN/13/13 Page 10

Observation-Based Slicing Binkley et al.

Table 3: Results for four cases of applying ORBS

Full Partial Trajectory

2 Files | 2 Files 3 Files 4 Files
Lines 10,804 | 10,804 11,904 21,296
Deletions 3,586 | 9,959 11,503 19,782
Compilations 61,267 | 48,085 50,826 92,691
Executions 4,108 | 5,027 5,602 11,255
Reuses 15,227 | 5,128 5,480 10,041
Time 1047m | 515m 585m 1584m
variables.c 3,042 456 456 456
parse.y 4,176 389 389 375
lib/glob.glob.c - - 6 6
subst.c - - - 677
Slice size 67% 8% 7% 7%
Slice size (SLOC) 90% 11% 10% 10%

is about to be returned to the caller of the function strlong. It is expected that this function is called
very often while processing the test cases of arith.tests, because these test cases test the arithmetic
functions of bash. This expectation is confirmed by measuring the statement coverage with gcov: the
function st rlong is invoked 80,425 times causing 80,425 occurrences of the criterion in the trajectory.
Note that the file containing the criterion is not sliced (it is not the target of the deletion) in this case study.

6.2 Executing ORBS

ORBS relies on three operations, SETUP, BUILD, and EXECUTE. For bash, SETUP not only instruments
expr.c but also runs the configuration script, . /configure, which configures the bash installation
process for the local environment. The compilation phase BUILD strongly relies on incremental builds so
that only the components dependent on the sliced files are rebuilt. EXECUTE runs the built bash on the
test suite arith.tests.

In the first two cases, ORBS is executed in two different modes. The first, referred to as full trajectory is
described in Section 3. The second, referred to as partial trajectory, considers only a prefix of the trajectory
and is used to illustrate that we can restrict an ORBS slice to a subset of the variable execution instances.
In this part of the experiment the first 100 (an arbitrary cut off) entries from the trajectory are considered.
Restricting the trajectory can be used to focus on a specific part of the used input. Here, the first 100
instances are caused by the first 66 lines in the test file arith.tests and all other lines will therefore
not be considered in this part of the experiment.

Case 3 considers the deletion of lines from the file 1ib/glob/glob.c. This file is part of a library
included with bash. The included libraries, although they are available in source code, are used as binary
components in the build. They are only compiled in the first build of bash and all the following compila-
tions use the binary library. Including this file required fixing several missing dependencies in the Makefile.
Case 4 includes a fourth file to be sliced. The file we chose to add is subst . c as it is the largest source
code file within bash. In Cases 3 and 4 the partial trajectory is used.

6.3 Results and Discussion

Table 3 compares the results obtained from the four cases. It shows the number of lines that are considered
and how many are deleted. It also shows the number of compilations and executions performed by ORBS,
the number of executions that were not necessary due to reuse of cached results, and the total time taken.
For the four different sliced files it shows the number of SLOC remaining.

In the first case where the two files are sliced based on the full trajectory, 3,586 of 10,804 lines are deleted.

RN/13/13 Page 11

Observation-Based Slicing Binkley et al.

Comparing SLOC, the numbers are lower: From variables.c, only 467 SLOC have been removed.
This is in line with the expectations: The criterion and the sliced files were chosen to exercise arithmetic
functions involving variables. From parse.y 1835 SLOC are removed. However, no line in the actual
grammar part has been removed (except for comments and unnecessary lines containing a single *;’). Most
of the removed lines were in the declaration part and in the auxiliary function part in parse.y. ORBS
needed 61,267 compilations and 20,335 executions (from which 15,227 were cache hits and thus avoided)
and took 17 hours and 27 minutes.

The switch from the full to the partial trajectory has a dramatic effect. Now 9,959 out of 10,804 lines
are deleted (92%) and the two sliced files have only a few hundred lines left. In terms of SLOC,
variables.c is 13% of the original size and parse.y is 8.6% of the original size. The higher num-
ber of deletions affects the number of compilations and executions which dropped significantly, causing a
much lower runtime (down to less than nine hours). This change can be explained by the observation that
only part of the test input is considered with the partial trajectory and this part only tests a small subset of
the arithmetic functions.

The addition of the small file 1ib/glob/glob. c in Case 3 does not impact the slice size of the other
two files. The file itself is almost deleted completely, only six lines are left. These six lines consist of
three variable definitions and a function definition. None of these six lines can be deleted because they are
referenced elsewhere (although the referenced function is never executed).

In the fourth case a large file subst . c is added, adding 9,392 lines (6,890 SLOC) to be considered for
deletion. As the number of lines to be sliced has almost doubled, the number of needed compilations and
executions is also almost doubled (in line with the expected almost linear complexity of the algorithm).
However, the actual runtime has almost tripled because many more executions time-out. ORBS deleted
93% of the lines in subst . ¢ (90% of the SLOC), leaving only 677 lines.

6.4 Summary

The case studies considered in this section demonstrate that ORBS can be used to compute slices of multi-
language production systems and that the resulting slices are significantly smaller than the original files.
It also shows that ORBS allows to focus on a specific set of files of interest that are to be sliced. The
four cases illustrate the linear nature of the algorithm in terms of the number of lines to be sliced. Finally,
considering both full and partial trajectories shows how only specific parts in the executions of a program
can be focussed on. It suggests an interesting avenue for future work: considering the impact of slicing
with respect to only certain instances in the output trajectory.

7 External Factors

This section considers RQ4, discussing various external factors that impact ORBS. We have already seen
in the previous sections how a small change, such as the direction of deletion, can make a difference for an
ORBS slice. In this section, we look at three external factors.

7.1 Source Code Layout

Clearly, the layout of the code to be sliced influences ORBS. Usually, source code is formatted according
to some guideline. Two examples are the Java Coding Conventions [13] and the GNU conventions for C.
There is a subtle difference between the two: In C, an open brace, ‘{’, is usually placed on a separate line
while in Java it is usually placed at the end of the line containing the predicate.

Figure 8 shows the code from Figure 3, reformatted to place the opening brace on a separate line. As
discussed earlier, ORBS will delete lines 1-3 of Figure 3 together. If there are more statements between
the { and }, ORBS will delete them in a first iteration, before the if statement, {, and } will be deleted
together. However, the code in Figure 8 has a different format and is processed differently: Line 1 can and

RN/13/13 Page 12

Observation-Based Slicing Binkley et al.

1 if (x < 0) 1 main () {
2 { 2 int x;

3 print x; 3 int j = 5;
4} 4 x = 7;

5y = 42; 5 }

6 //slice on y

Figure 9: A token-level ORBS Slice for the
Figure 8: Example Code from Figure 3 with dif- Code in Figure 5

ferent formatting

will be removed independent of the following lines because the remaining statement block can be always
executed without affecting the criterion.

A question naturally follows from considering source code layout: Suppose ORBS were to operate not at
the line level, but at the token level (i.e., deleting tokens from the program). Here a token might be defined
as a string of non-white-space characters separated by white-space characters. Alternatively, the definition
of the underlying language might be used (e.g., a C or a Java token). Depending on the definition of a
token, this might require some language dependent infrastructure. The difference is seen with strings such
as “a =i++", which has three white-space-separated tokens, but four C language tokens. In an experiment
we computed an ORBS slice at the token level using the example in Figure 5 by placing each C language
token on its own line. After 494 compilations and 41 executions the slice in Figure 9 was produced. It is
clearly correct for the original slicing criterion and test case.

7.2 File Order

We have seen in the discussion of the algorithm that it matters if ORBS starts at the beginning and deletes
in a forward direction or if it starts at the end and operates in a backward direction. This is clearly an
implementation choice that is not necessarily an external factor. However, as ORBS operates on a list of
files which is specified by the user, the order of the files in the list may impact the slice. An additional
experiment with the last bash case study confirms this. Reversing the order of the files led to ORBS
requiring 90,532 compilations and 9,923 executions to delete 19,736 lines (i.e., this trades just over a 2.3%
decrease in compilations and a 11.8% decrease in executions for a 0.2% decrease in deleted lines). Not
only are these numbers slightly different, but the individual slice sizes are too: 1ib/glob/glob.c and
variables.c have not changed, but subst . c has 708 lines left (more than before), and parse.y
has 390 lines left (more than before), indicating significant changes.

7.3 Environment

The sliced version created by ORBS is perfectly adapted to the specific configuration and environment
but is fragile to deviations in the environment which can cause unexpected results. For example, even the
change necessary to compute coverage information (different arguments to the compiler) will make the
sliced program fail on the same input with a crash. If the configuration of the build process for bash is
changed to generate coverage information before ORBS is applied, then the slice generated by ORBS is
different.

The same sensitivity to the build and test environment holds if a different operating system is used, a
different compiler, or just different arguments for the compiler. As an example, we considered the impact
of optimisation: When optimisation was enabled the results were significantly different. Other experiments
with different operating systems (OSX instead of Linux) or different compilers (llvm instead of gcc) caused
similar differences.

In addition to differences arising from different build environments and configurations, some are due to
explicitly undefined behaviour in programming languages. A notorious example is C with its wide range of
undefined behaviours. ORBS may cause undefined behaviour through deletion where the actual observed

RN/13/13 Page 13

Observation-Based Slicing Binkley et al.

Original Slice
1 #include <stdio.h> 1 int inc(int start) {
2 2 int c;
3 int count; 3 if (start) {
4 4 c = 0;
5 int inc(int start) { 5 } else {
6 int c; 6 c += 1;
7 c = count; /* restore */ 7 }
8 if (start) { 8 return c;
9 c = 0; 9 }
10 } else { 10 int main (int argc, char x*xargv) {
11 c += 1; 11 int i, afl0];
12 } 12 inc(l); /% initialise counter */
13 count = c; /* save #*/ 13 for (i = 0; 1 < 10; ++1i) {
14 return c; 14 alil = inc(0); /* count =*/
15 } 15 }
16 16 for (i = 0; 1 < 10; ++1i) {
17 int main (int argc, char *xargv) { 17 int x = af[i];
18 int i, a[l10]; 18 }
19 inc(l); /% initialise counter */ 19 }
20 for (i = 0; i < 10; ++1i) {
21 ali]l = inc(0); /% count */

22 }

23 for (i = 0; i < 10; ++1i) {
24 int x = afil];

25 printf ("$d\n", x);

26 }

27 return 0O;

Figure 10: Example of Undefined Behaviour Impacting a Slice

behaviour does not change. Figure 10 shows an example. The function inc is used to increase a counter
on every invocation. The current value of the counter is read from a global variable at the beginning of
the function and it is saved in the global variable at the end of the function. The behaviour of the original
program is defined. However, the slice that ORBS produces for variable x just before Line 18 no longer
has the global variable. Clearly, every invocation of inc (0) now uses variable ¢ without being initialised.
Why does the slice still produce the same observed behaviour compared to the original although formally
its behaviour is undefined? The reason is the way the generated code uses the stack: The first invocation
of inc (1) defines the local variable which has a specific location on the stack. The following invocations
use the same location on the stack and because no other function has been invoked, the old value of c has
not been overwritten and the new instance of ¢ contains the old value from the previous invocation.

7.4 Summary

In answer to RQ4 we find that the results ORBS produces are strongly dependent on external factors.
However, this dependence allows ORBS to produce smaller slices adapted to the specific environment in
which the program is built and executed. Nevertheless, ORBS guarantees that the generated slice has the
same behaviour as the original program for the slicing criterion.

8 Related Work

ORBS computes dynamic slices, a concept introduced by Korel and Laski [8,9]. They gave a formal
definition of a dynamic slice and considered several algorithms to compute dynamic slices based on their
definition. In contrast most later work on dynamic slicing ‘defines’ dynamic slicing based on the algorithms
used to compute it (e.g., Agrawal et al.’s work [1] and Demillo et al.’s work [5]).

In dynamic slicing terms, the closest work is Critical Slicing [S] where a statement is considered to be

RN/13/13 Page 14

Observation-Based Slicing Binkley et al.

critical if its deletion results in changes in observed behaviour for the slicing criterion. A critical slice
consists of all the critical statements. One limitation of this approach is that it considers statements to
be critical although they may not be, and thus could be deleted after another statement is deleted. For
example, a variable declaration can be deleted after all occurrences of the variable have been deleted. Thus,
in most cases, critical slices are significantly larger than observation-based slices. The other closely related
approach is STRIPE [4] which eliminates statements from an execution trace with the help of a conventional
debugger. The approach uses delta debugging [17] to maximise the set of deleted statements, however,
STRIPE ignores control dependence and does not produce executable slices. Moreover, no evaluation
of STRIPE has been presented. Both approaches use a debugger as the underlying infrastructure and
thus cannot be applied to multi-language systems (which ORBS has no problem with). They have been
compared to ORBS in Section 5.

Two other related dynamic slicing techniques are Union Slicing [3] and Simultaneous Dynamic Program
Slicing [6]. Like the ORBS approach, the Union Slicing algorithm of Beszédes et al. [3] aims to approx-
imate the realizable slice for a set of test inputs. It does so by producing the union of the independently-
computed dynamic slices for each test case. The algorithm uses static analysis to compute local dependency
information, instruments the source code, and then executes it. Then it computes dynamic slices globally
(thus requiring only one slicing pass for all slices).

It is thus similar to ORBS in requiring execution and instrumentation (although ORBS instrumentation is
lighter-weight) but unlike ORBS, the resulting union slice is not guaranteed to be executable (even though
each of the constituent dynamic slices is for its respective test case). Furthermore, a union slice is not
necessarily well-behaved for the set of test cases being considered as a whole. Separate dynamic slices
can interfere with each other when simply unioned together [6]. Finally, Union Slicing requires static
dependence information, which means that it is language dependent.

Hall’s Simultaneous Dynamic Slicing (SDS) approach [6] addresses the problem of interference by itera-
tively building up a slice from a set of starting program points (which may be initially empty) and a dynamic
slice for each execution in the test case set. The starting program point set expands with each iteration (and
thus forms a partially-complete slice that may be missing some dependence information) until it converges.

This is effectively a variation on the traditional union operator. In this case, rather than creating a union of
program points after dependence computation, Hall unions slices in the light of their combined dependence
information to ensure that existing dependencies are retained as the union gets bigger, and that required but
missing dependencies are included until no increase in size is observed.

Like Union Slicing (and unlike ORBS), SDS requires the computation of dependence information (and
is thus language-dependent). It also requires a dynamic slicer meeting certain assumptions. Like ORBS,
SDS relies on instrumentation and execution (for SDS, to generate full traces). It also frames the slicing
operation similarly to ORBS: as a problem of retaining the relationship between inputs and outputs (in
Hall’s terms, an iosequence) and removing non-influencing code.

There have been a few previous approaches to multi-language slicing. Riesco et al. [11] describe an ap-
proach to parameterising languages and slicing on their semantics. However, their approach is currently
restricted to WHILE languages where ORBS has no such restriction and requires no semantic modelling.

Finally, P6cza et al. present an approach to dynamic slicing across languages on the .NET platform [10].
Their approach uses the Common Language Runtime (CLR) debugging framework to provide traceability
between instructions and source code. They compute a slice on the execution trace. Since all Common
Language Specification (CLS)-compliant languages (e.g., C# and Visual Basic.NET) are translated into the
CLR framework, slicing can be carried out across the languages (or at least, the CLS-compliant parts of
them). ORBS is not restricted to any particular language group or underlying representation: the tools that
build the system can be used to undertake the slicing.

RN/13/13 Page 15

Observation-Based Slicing Binkley et al.
9 Conclusion

This paper presented ORBS, an approach to program slicing using statement deletion as the primary opera-
tion, and observation as the validation criteria. The approach is simple to implement and leverages existing
tool chains. For the first time, it permits multiple languages (including binary code) to be sliced as a single
system.

Future work will use search-based approaches to look for smaller observation-based slices. It will also
consider the pros and cons of running the algorithm from the start of the file to the end versus starting at
the end of the file and working toward the beginning. Finally, empirical study of the time versus slice-size
tradeoffs of different deletion window sizes will be considered.

10 Acknowledgements

This work was partly funded by the Engineering and Physical Sciences Research Council [grant number
EP/G060525/2] and NSF grant CCF 0916081. Data from the EPSRC-funded portions of the work may be
available from Jens Krinke subject to licence and confidentiality restrictions.

References

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In Proceedings of the ACM
SIGPLAN 90 Conference on Programming Language Design and Implementation, pages 246-256,
1990.

[2] Paul Anderson and Tim Teitelbaum. Software inspection using CodeSurfer. In Proc. of the Ist
Workshop on Inspection in Software Engineering (WISE), pages 4—11, 2001.

[3] Arpad Beszédes, Csaba Farag6, Zsolt Mihaly Szabé, Janos Csirik, and Tibor Gyiméthy. Union slices
for program maintenance. In ICSM, pages 12-21, 2002.

[4] Holger Cleve and Andreas Zeller. Finding failure causes through automated testing. In International
Workshop on Automated Debugging, pages 254-259, 2000.

[5] Richard A DeMillo, Hsin Pan, and Eugene H Spafford. Critical slicing for software fault localization.
In International Symposium on Software Testing and Analysis, pages 121-134. ACM, 1996.

[6] Robert]. Hall. Automatic extraction of executable program subsets by simultaneous dynamic program
slicing. Automated Software Engineering, 2(1):33-53, 1995.

[7] Capers Jones. Software Engineering Best Practices. McGraw-Hill, 2010.

[8] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Processing Letters,
29(3):155-163, October 1988.

[9] Bogdan Korel and Janusz Laski. Dynamic slicing in computer programs. Journal of Systems and
Software, 13(3):187-195, 1990.

[10] K Pécza, M Biczd, and Z Porkolab. Cross-language program slicing in the .NET framework. In
Proceedings of the 3rd .NET Technologies Conference, pages 141-150, Plzen (Czech Republic), 2005.

[11] Adridn Riesco, Irina Mériuca Asdvoae, and Mihail Asdvoae. A generic program slicing technique
based on language definitions. In Recent Trends in Algebraic Development Techniques, volume 7841
of Lecture Notes in Computer Science, pages 248-264. 2013.

[12] Richard Stallman. Using and Porting GNU CC. Free Software Foundation, March 1998. Distributed
with GNU CC.

RN/13/13 Page 16

Observation-Based Slicing Binkley et al.

[13] Sun Microsystems. Code Conventions for the Java Programming Language, April 1999.

[14] Mark Weiser. Program slicing. In International Conference on Software Engineering, pages 439—449.
IEEE Press, 1981.

[15] Mark Weiser. Programmers use slices when debugging. Communications of the ACM, 25(7):446—452,
July 1982.

[16] D. A. Wheeler. SLOC count user’s guide. http://www.dwheeler.com/sloccount/
sloccount.html., 2004.

[17] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In ESEC/FSE, pages
253-267. Springer, 1999.

[18] Xiangyu Zhang and Rajiv Gupta. Whole execution traces and their applications. ACM Transactions
on Architecture and Code Optimization, 2(3), September 2005.

RN/13/13 Page 17

